| 研究生: |
余彥琛 Yu, Yan-chen |
|---|---|
| 論文名稱: |
使用區域電離層模型提升精密單點定位效能:在太陽活動活躍期 Using regional ionosphere maps to improve precise point positioning performance in high solar activities |
| 指導教授: |
楊名
Yang, Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 精密單點定位 、區域電離層模型 、電離層穿刺點 、垂直總電子含量 、定位誤差 、收斂時間 |
| 外文關鍵詞: | Precise Point Positioning(PPP), Regional Ionosphere Maps(RIM), Ionosphere Pierce Point(IPP), Vertical Total Electron Content(VTEC), positioning error, convergence time |
| 相關次數: | 點閱:104 下載:35 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
精密單點定位(PPP)是一個高精度的全球導航衛星系統(GNSS)定位技術,藉由單個接收器以及精密衛星軌道、精密衛星鐘差和其他誤差改正產品,消除定位誤差使其達到公分等級定位精度,然而較長的收斂時間大大限制了其應用。研究指出,使用電離層模型作為約制條件處理PPP時,能夠有效提升定位效能。然而在太陽活動活躍期時,電離層資訊的精確度及時空解析度可能會嚴重影響精密單點定位的效能。全球電離層模型在該時期對於低緯度地區的使用來說可能幫助有限,因此凸顯了區域電離層模型能夠提供更即時、更精確的電離層資訊的價值。內政部國土測繪中心使用Trimble pivot軟體,根據台灣的衛星基準站,產生區域電離層模型,作為電離層資訊提供給使用者,幫助其定位解算。本研究利用上述的區域電離層模型,藉由時間內插及空間內插得到待測站對應的垂直總電子含量(VTEC)和穿刺點座標,再藉由映射函數轉換為電離層延遲,作為PPP解算的約制條件。研究結果發現,相較於傳統PPP模型,區域電離層模型在定位解算前30分鐘,能夠較明顯的提升定位精度,在10分鐘、20分鐘、30分鐘時,水平方向分別提升了20%、16%和13%;垂直方向則在20分鐘和30分鐘時分別提升15%和9%。收斂時間方面,以30公分作為收斂門檻值,水平方向減少41%,垂直方向沒有幫助;以20公分作為收斂門檻值,水平方向減少29%,垂直方向沒有幫助;以10公分作為收斂門檻值,水平方向減少3%,垂直方向減少11%。研究同時加入了使用全球電離層模型的結果,兩者比較可以發現,區域電離層模型能夠更加顯著的提升精密單點定位效能,特別是在水平方向,本研究顯示了在太陽活動活躍期時,區域電離層模型對於精密單點定位的重要性。
Precise Point Positioning (PPP) is a Global Navigation Satellite System (GNSS) positioning technique that uses a single receiver, along with precise satellite orbits, satellite clock corrections, and other error correction products, to eliminate positioning errors and achieve centimeter-level accuracy. However, the long convergence time significantly limits its application. Studies have indicated that using external ionospheric information as constraints in PPP processing can effectively improve positioning performance .The National Land Surveying and Mapping Center (NLSC) of Taiwan employs Trimble Pivot software and has established reference stations across Taiwan to generate regional ionosphere maps. These maps provide ionospheric information to users, assisting in positioning solutions. This study utilizes the aforementioned regional ionosphere maps, employing temporal and spatial interpolation to obtain the corresponding Vertical Total Electron Content (VTEC) and pierce point coordinates for the test stations. The VTEC is then converted into ionospheric delay using mapping functions, which serves as a constraint in PPP solutions.
袁運斌(2002)。基於GPS的電離層監測及延遲改正理論與方法的研究。中國科學院研究生院(測量與地球物理研究所)博士學位論文。
儲豐宥、楊名、李皇緣(2022)。利用全球電離層網格縮短GPS精密單點定位之收斂時間,台灣土地研究,第25卷,第2期,第69-88頁
Abdallah, A., Agag, T., Schwieger, V. (2023). Method of development of a new regional ionosphere model (RIM) to improve static single-frequency precise point positioning (SF-PPP) for Egypt using Bernese GNSS software. Remote Sensing, 15(12) , 3147
Bisnath, S., Gao, Y. (2009). Current state of precise point positioning and future prospects and limitations. In: Sideris MG (ed) Observing our changing earth, 133, 615-623
Boisits, J., Glaner, M., & Weber, R. (2020). Regiomontan: a regional high precision ionosphere delay model and its application in Precise Point Positioning. Sensors, 20(10) , 2845
Chen, Y.‐S., Chen, C.‐H., Yang, M., & Chu, F.‐Y. (2024). Evaluate the impact of regional ionospheric data assimilation model on precise point positioning. Space Weather, 22(8)
Davies, K. (1969). Ionospheric radio waves. Blaisdel Publishing Company.
Dubey, S., Wahi, R., & Gwal, A. k.(2006). Ionospheric effects on GPS positioning. Advances in Space Research, 38(11), 2478–2484.
Geng, J., Teferle, FN., Meng, X., Dodson, A. (2011). Towards PPP-RTK: ambiguity resolution in real-time precise point positioning. Advances in Space Research, 47(10), 1664–1673
Leick, A., Rapoport, L., & Tatarnikov, D. (2015). GPS satellite surveying. Hoboken, New Jersey, John Wiley & Sons, Inc.
Liu, L., Wan, W., Chen, Y., & Le, H. (2011). Solar activity effects of the ionosphere: a brief review. Chinese Science Bulletin, 56, 1202–1211.
Lou, Y., Zheng, F., Gu, S., Wang, C., Guo, H., Feng, Y. (2016). Multi-GNSS precise point positioning with raw single-frequency and dual frequency measurement models. GPS Solutions, 20(4), 849–862
Li, W., Li, Z., Wang, N., liu, A., Zhou, K., Yuan, H., & Krankowski, A. (2022). A satellite‑based method for modeling ionospheric slant TEC from GNSS observations: algorithm and validation. GPS Solutions, 26(1)
Li, M., Yuan, Y., Wang, N., Li, Z., Liu, X., & Zhang, L. (2018). Statistical comparison of various interpolation algorithms for reconstructing regional grid ionospheric maps over China. Journal of Atmospheric and Solar-Terrestrial Physics, 172, 129–137.
Ma, R., Xu, J., Wang, W., & Wei, W. (2009). Seasonal and latitudinal differences of the saturation effect between ionosphericNmF_2and solar activity indices. Journal of Geophysical Research: Space Physics, 114(A10).
Niell, A. (1996). Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research, 101, 3227-3246.
Rawer, K. (2013). Wave propagation in the ionosphere. Springer Science & Business Media.
Schaer, S. (1999). Mapping and predicting the Earth's ionosphere using the global positioning system. Geod.-Geophys. Arb. in der Schweiz, 59
Shi, J., Xu, C., Guo, J., Gao, Y. (2014). Local troposphere augmentation for real-time precise point positioning. Earth Planets Space, 66(1), 1–13
Teunissen, P., & Montenbruck, O. (2017). Springer handbook of global navigation satellite systems. Springer Nature Switzerland AG.
Watson, C., Tregoning P., & Coleman R. (2006). Impact of solid Earth tide models on GPS coordinate and tropospheric time series. Geophysical Research Letters, 33, L08306
Wielgosz, P., Milanowska, B., Krypiak-Gregorczyk, A., & Jarmołowski, W. (2021). Validation of GNSS-derived global ionosphere maps for different solar activity levels: case studies for years 2014 and 2018. GPS Solutions, 25(103)
Xiang, Y., Gao, Y. (2017). Improving DCB estimation using uncombined PPP. Navigation, 64(4), 463–473
Xiang, Y. (2018). Carrier phase-based ionospheric modeling and augmentation in uncombined precise point positioning (UPPP). University of Calgary, Calgary
Xiang, Y., Gao, Y., & Li, Y. (2020). Reducing convergence time of precise point positioning with ionospheric constraints and receiver differential code bias modeling. Journal of Geodesy, 94(8).
Yang, M., Hsu, H., & Chu, F. (2024). Taiwan online precise point positioning service (TOPS): methodology and test results. Journal of Surveying Engineering-ASCE, 150(3), 04024007.
Tu, R., Zhang H., Ge M., Huang G. (2013). A real-time ionospheric model based on GNSS Precise Point Positioning. Advances in Space Research, 52(2013), 1125-1134
Zhang, H., Gao, Z., Ge, M., Niu, X., Huang, L., Tu, R., & Li, X. (2013). On the convergence of ionospheric constrained precise point positioning (IC-PPP) based on undifferential uncombined raw GNSS observations. Sensors, 13(11), 15708–15725.
Zha, J., Zhang, B., Liu, T., & Hou, P. (2021). Ionosphere-weighted undifferenced and uncombined PPP-RTK: theoretical models and experimental results. GPS Solutions, 25(135)
Zhu, K., Yan, R., Xiong, chao, Zheng, lin, Zhima, Z., Shen, X., Liu, D., Guan, Y., liu, C., Xu,
S., Lv, F., Guo, F., & Zhou, N. (2023). Annual and semi-annual variations of electrondensity in the topside ionosphere observed by CSES. Frontiers in Earth Science, 11