| 研究生: |
馬崇仁 Ma, Chung-Jen |
|---|---|
| 論文名稱: |
環境與演化對於台灣蒿屬植物葉際微生物群落的影響 The impact of environment and evolution on the phyllosphere microbiota of Artemisia in Taiwan |
| 指導教授: |
蔣鎮宇
Chiang, Tzen-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 葉際 、16S總體基因體學 、ITS總體基因體學 、垂直傳遞 、地上部 、地下部 |
| 外文關鍵詞: | Phyllosphere, 16S Metagenomics, ITS Metagenomics, Vertical transfer, Shoot system, Root system |
| 相關次數: | 點閱:61 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
植物宿主如何與共生微生物互動,以及這些微生物的來源,一直是許多研究探討的重點。然而,大多數研究集中於植物地下部分的微生物,包括土壤、根際和內生微生物。相比之下,有關植物地上部分的微生物,特別是葉際微生物的研究相對較少。葉際微生物的組成和來源受多種因素影響。從環境角度來看,葉際微生物可以來自空氣、土壤、雨水和授粉者,並受到紫外線、溫度變化以及有限的養分和水分的生存壓力影響。從演化角度來看,微生物可能由土壤、根際、根內甚至通過親代種子的垂直傳遞到植物地上部分。此外,植物宿主的基因型、次級代謝物和防禦機制也對微生物的篩選起著重要作用。
本研究以臺灣常見的蒿屬植物為對象,包括茵陳蒿(Artemisia capillaris)、濱艾(Artemisia fukudo)、五月艾(Artemisia indica)和牡蒿(Artemisia japonica)。研究比較了這些蒿屬植物的葉際微生物與土壤、根際和根內微生物的組成,並分析了葉際微生物的構成。分析結果顯示,土壤和根際的物種豐富度和多樣性顯著高於根內和葉際。此外,環境因素對葉際微生物的影響力比演化因素更為顯著。葉際微生物的組成與土壤、根際和根內微生物有明顯差異,其中某些微生物的相對豐度變化可能與垂直傳遞有關。
How plant hosts interact with symbiotic microorganisms and the origins of these microorganisms have long been the focus of many studies. However, most research has concentrated on microorganisms in the root system of plants, including soil, rhizosphere, and endosphere. In contrast, there has been relatively little research on microorganisms in the shoot system of plants, particularly phyllosphere microorganisms. The composition and sources of phyllosphere microorganisms are influenced by various factors.From an environmental perspective, phyllosphere microorganisms can come from air, soil, rainwater, and pollinators, and are influenced by survival pressures such as ultraviolet radiation, temperature fluctuations, and limited nutrients and water. From an evolutionary perspective, microorganisms can be vertically transmitted from soil, rhizosphere, and endosphere, or even from parent seeds to shoot system of plants. Additionally, the plant host's genotype, secondary metabolites, and defense mechanisms play a crucial role in the selection of microorganisms.This study focuses on common Artemisia species in Taiwan, including Artemisia capillaris, Artemisia fukudo, Artemisia indica, and Artemisia japonica. The study compares the composition of phyllosphere microorganisms of these Artemisia species with those of soil, rhizosphere, and endosphere, and analyzes the composition of phyllosphere microorganisms. The results show that the species richness and diversity of soil and rhizosphere are significantly higher than those of endosphere and phyllosphere. Furthermore, environmental factors have a more significant impact on the phyllosphere microorganisms than evolutionary factors. The composition of phyllosphere microorganisms is markedly different from those of soil, rhizosphere, and endophytes, and some changes in the relative abundance of microorganisms may be explained by vertical transmission.
Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological research, 221, 36-49.
Abadi, V. A. J. M., Sepehri, M., Rahmani, H. A., Zarei, M., Ronaghi, A., Taghavi, S. M., & Shamshiripour, M. (2020). Role of dominant phyllosphere bacteria with plant growth–promoting characteristics on growth and nutrition of maize (Zea mays L.). Journal of Soil Science and Plant Nutrition, 20, 2348-2363.
Abdelfattah, A., Tack, A. J., Lobato, C., Wassermann, B., & Berg, G. (2023). From seed to seed: the role of microbial inheritance in the assembly of the plant microbiome. Trends in Microbiology, 31, 346-355.
Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M., & Vorholt, J. A. (2014). A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS genetics, 10, e1004283.
Bringel, F., & Couée, I. (2015). Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Frontiers in microbiology, 6, 486.
Bao, L., Cai, W., Cao, J., Zhang, X., Liu, J., Chen, H., ... & Bai, Z. (2020). Microbial community overlap between the phyllosphere and rhizosphere of three plants from Yongxing Island, South China Sea. Microbiologyopen, 9, e1048.
Bashir, I., War, A. F., Rafiq, I., Reshi, Z. A., Rashid, I., & Shouche, Y. S. (2022). Phyllosphere microbiome: diversity and functions. Microbiological Research, 254, 126888.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods, 13, 581-583.
Chaudhry, V., Runge, P., Sengupta, P., Doehlemann, G., Parker, J. E., & Kemen, E. (2021). Shaping the leaf microbiota: plant–microbe–microbe interactions. Journal of Experimental Botany, 72, 36-56.
Dong, C. J., Wang, L. L., Li, Q., & Shang, Q. M. (2019). Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PloS one, 14, e0223847.
Das, A., Dutta, S., Jash, S., Barman, A. R., Das, R., Kumar, S., & Gupta, S. (2019). Current Knowledge on Pathogenicity and Management of Stemphylium botryosum in Lentils (Lens culinaris ssp. culinaris Medik). Pathogens, 8, 225.
Downie, R. C., Lin, M., Corsi, B., Ficke, A., Lillemo, M., Oliver, R. P., ... & Cockram, J. (2021). Septoria nodorum blotch of wheat: disease management and resistance breeding in the face of shifting disease dynamics and a changing environment. Phytopathology, 111, 906-920.
El-Dawy, E. G. A. E. M., Gherbawy, Y. A., & Hussein, M. A. (2021). Morphological, molecular characterization, plant pathogenicity and biocontrol of Cladosporium complex groups associated with faba beans. Scientific Reports, 11, 14183.
Grady, K. L., Sorensen, J. W., Stopnisek, N., Guittar, J., & Shade, A. (2019). Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nature communications, 10, 4135.
Horton, M. W., Bodenhausen, N., Beilsmith, K., Meng, D., Muegge, B. D., Subramanian, S., ... & Bergelson, J. (2014). Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nature communications, 5, 5320.
Han, S., Yu, S., Zhu, T., Li, S., Qiao, T., Liu, Y., ... & Yang, C. (2021). Nigrospora oryzae causing black leaf spot disease of Hibiscus mutabilis in China. Plant disease, 105, 2255.
Hsueh, T. P., Lin, W. L., Dalley, J. W., & Tsai, T. H. (2021). The pharmacological effects and pharmacokinetics of active compounds of Artemisia capillaris. Biomedicines, 9, 1412.
Köberl, M., Müller, H., Ramadan, E. M., & Berg, G. (2011). Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One, 6, e24452.
Li, N., Shi, C., Shi, S., Wang, H., Yan, J., & Wang, S. (2017). An inulin-type fructan isolated from Artemisia japonica and its anti-arthritic effects. Journal of Functional Foods, 29, 29-36.
Li, P. D., Zhu, Z. R., Zhang, Y., Xu, J., Wang, H., Wang, Z., & Li, H. (2022). The phyllosphere microbiome shifts toward combating melanose pathogen. Microbiome, 10, 56.
Mattos, B. B., Montebianco, C., Romanel, E., da Franca Silva, T., Bernabé, R. B., Simas-Tosin, F., ... & Barreto-Bergter, E. (2018). A peptidogalactomannan isolated from Cladosporium herbarum induces defense-related genes in BY-2 tobacco cells. Plant Physiology and Biochemistry, 126, 206-216.
Morales Moreira, Z. P., Helgason, B. L., & Germida, J. J. (2021). Assembly and potential transmission of the Lens culinaris seed microbiome. FEMS Microbiology Ecology, 97, fiab166.
Narayan, N. R., Weinmaier, T., Laserna-Mendieta, E. J., Claesson, M. J., Shanahan, F., Dabbagh, K., ... & DeSantis, T. Z. (2020). Piphillin predicts metagenomic composition and dynamics from DADA2-corrected 16S rDNA sequences. BMC genomics, 21, 1-12.
Op De Beeck, M., Lievens, B., Busschaert, P., Declerck, S., Vangronsveld, J., & Colpaert, J. V. (2014). Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PloS one, 9, e97629.
Papik, J., Folkmanova, M., Polivkova-Majorova, M., Suman, J., & Uhlik, O. (2020). The invisible life inside plants: Deciphering the riddles of endophytic bacterial diversity. Biotechnology advances, 44, 107614.
Sharifi-Rad, J., Herrera-Bravo, J., Semwal, P., Painuli, S., Badoni, H., Ezzat, S. M., ... & Cho, W. C. (2022). Artemisia spp.: an update on its chemical composition, pharmacological and toxicological profiles. Oxidative Medicine and Cellular Longevity, 2022, 5628601.
Vacher, C., Hampe, A., Porté, A. J., Sauer, U., Compant, S., & Morris, C. E. (2016). The phyllosphere: microbial jungle at the plant–climate interface. Annual review of ecology, evolution, and systematics, 47, 1-24.
Wu, T. S., Tsang, Z. J., Wu, P. L., Lin, F. W., Li, C. Y., Teng, C. M., & Lee, K. H. (2001). New constituents and antiplatelet aggregation and anti-HIV principles of Artemisia capillaris. Bioorganic & Medicinal Chemistry, 9, 77-83.
Wang, Y., & Qian, P.-Y. (2009). Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One, 4, e7401.
Wang, W., Taylor, A. S., Tongson, E., Edwards, J., Vaghefi, N., Ades, P. K., ... & Taylor, P. W. (2024). Identification and pathogenicity of Colletotrichum species associated with twig dieback of citrus in Western Australia. Plant Pathology, 73, 1194-1212.
Xu, N., Zhao, Q., Zhang, Z., Zhang, Q., Wang, Y., Qin, G., ... & Qian, H. (2022). Phyllosphere microorganisms: sources, drivers, and their interactions with plant hosts. Journal of agricultural and food chemistry, 70, 4860-4870.
Yoon, W. J., Moon, J. Y., Song, G., Lee, Y. K., Han, M. S., Lee, J. S., ... & Hyun, C. G. (2010). Artemisia fukudo essential oil attenuates LPS-induced inflammation by suppressing NF-κB and MAPK activation in RAW 264.7 macrophages. Food and Chemical Toxicology, 48, 1222-1229.
Yang, M. T., Kuo, T. F., Chung, K. F., Liang, Y. C., Yang, C. W., Lin, C. Y., ... & Yang, W. C. (2020). Authentication, phytochemical characterization and anti-bacterial activity of two Artemisia species. Food Chemistry, 333, 127458.
Yang, F., Jiang, H., Chang, G., Liang, S., Ma, K., Cai, Y., ... & Shi, X. (2023). Effects of rhizosphere microbial communities on cucumber Fusarium wilt disease suppression. Microorganisms, 11, 1576.
Zeng, R., Gao, S., Xu, L., Liu, X., & Dai, F. (2018). Prediction of pathogenesis-related secreted proteins from Stemphylium lycopersici. BMC microbiology, 18, 1-10.
Zhang, Y. Z., Jiang, D. Y., Zhang, C., Yang, K., Wang, H. F., Xia, X. W., & Ding, W. J. (2021). Pathological impact on the phyllosphere microbiota of Artemisia argyi by haze. Journal of Microbiology and Biotechnology, 31, 510.
Zhu, Y. G., Xiong, C., Wei, Z., Chen, Q. L., Ma, B., Zhou, S. Y. D., ... & Duan, G. L. (2022). Impacts of global change on the phyllosphere microbiome. New Phytologist, 234, 1977-1986.
Zeng, Q., Johnson, K. B., Mukhtar, S., Nason, S., Huntley, R., Millet, F., ... & Sundin, G. W. (2023). Aureobasidium pullulans from the fire blight biocontrol product, Blossom Protect, induces host resistance in apple flowers. Phytopathology, 113, 1192-1201.