簡易檢索 / 詳目顯示

研究生: 胡鳳玲
Hu, Feng-Ling
論文名稱: 以群集分析為基建構失效模式關聯之研究-以IC封裝印字製程為例
The use of cluster analysis for the failure mode classification problem - case from IC packaging marking process
指導教授: 楊大和
Yang, Taho
學位類別: 碩士
Master
系所名稱: 工學院 - 工程管理碩士在職專班
Engineering Management Graduate Program(on-the-job class)
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 79
中文關鍵詞: 群集分析失效模式與效能分析切割式分群法
外文關鍵詞: Failure Mode and Effects Analysis, Partition Clustering, Cluster Analysis
相關次數: 點閱:191下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在半導體封裝生產製造系統之中,由於製程設備和產品種類日新月異,如何掌控製程參數的變異和維持製程設備的有效一直是很重要的課題。製造過程中,人員需熟悉操作方法,了解維修保養和故障排除;同時,若要提高產品的品質及降低不良率,除了最佳的印字製程參數設定外,就是讓設備保持在最佳的運轉狀況。因此需使用適當的集群分析方法來將龐大的失效資料進行萃取與歸納,以及從原有基礎的失效模式知識,透過適當的統計分類方法,進行失效狀態的關聯與趨勢分析。
    本文針對半導體封裝製程中所產生之失效模式知識,探討知識分群特性以及維度變數的決定對於群集分類的影響。對於群集的資料分佈意義和參數對群集的意義與各群集間的關係,做更進一步的分析與描述,並選取重要之群集分析方法將失效模式進行萃取分析,如切割式分群法、階層式分群法、自組織映射網路分群法等將失效模式進行萃取分析,以歸納出有效的群集分析準則,作為失效趨勢的分類取樣之重要依據。協助工程師對設備與產品上進行問題排除,針對不周延之處加以改進。本文在進行實務專家系統建構時奠定相當的基礎,在群集分類的結果可作為失效模式與效能分析分類之基礎,使整體異常事件處置時間能大幅縮短並增進產線效能。
    最後本研究於成果方面,對於失效事件經由切割式分群法與關聯法則的分析,將危險程度高的失效事件抽離出來,並從各群集分析方法的特性進行探討,可作為工程人員改善異常與提升生產效能之基礎。

    In the manufacture system of semiconductor assembly, because the manufacture equipment and production type are rapid changed all the time, how to control the variety of process parameters and effectiveness of process equipment is important issue for discussing. In the manufacture process, people need to familiar with equipment, such as operated method, maintenance and troubleshooting. At the same time, in order to improve quality and reduce the yield rate, it not only needs to set up the best parameters in the making process but also has to keep the machine in the best running status. Based on this critical issue, it needs to use the appropriate clustering analysis method to extract and compress the huge failure data. Moreover, exerting the statistic analyzes the connection and trend of failure state in the original failure model knowledge.
    The research is focus on the failure model knowledge in the semiconductor assembly process. It describes how the factors of the attributes of knowledge clustering and the selecting dimension variables affect the clustering classification. Moreover, it explains the meaning of clustering data distribution and the effect between clustering and parameters. Furthermore, it generalizes the effective principle of clustering analysis by using the method of cluster analysis, which are Partition Clustering, Hierarchical Clustering and Self Organization Map, in the failure model. This principle of clustering analysis is the important basis for classifying the sample in the failure trend. The purpose of this method is to help engineers solve the problems effectively and improve the function for the abnormal status of equipment or production. The research is established in the basis of reality expert system. Thus, the result of clustering categorization could be the foundation of Failure Mode and Effects Analysis classification. Expect that can shorten the solving time when the abnormal affair happens, deeply, and improve the capacity in production line.
    Final achievement, failure event analyze by Partition Clustering and associate rule, pick the high danger failure event, proceed to probe for the characteristic of every clustering analysis method, be the basis of improve deviation and promote production efficacy for engineering personnel.

    目錄 摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 vii 表目錄 viii 1. 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 論文架構 5 1.4 研究步驟 6 2. 文獻探討 8 2.1 切割式分群法 8 2.2 階層式分群法 10 2.3 自組織映射圖網路分群法 12 2.4 失效模式與效應分析 15 2.5 關聯式法則 20 2.6 IC封裝製程 22 3. 研究方法 30 3.1 群集特性探討 30 3.2 案例整理與定義 31 3.3 維度變數評估 36 3.4 高危害性關聯法則 39 3.5 趨勢模式假定 40 4. 實驗分析與比較 42 4.1 實驗架構與步驟 42 4.2 結果比較探討 44 4.3 關聯法則計算 69 4.4 分群最終結論 69 5. 結論與未來建議 71 5.1 結論 71 5.2 未來建議 72 參考文獻 74 附錄A、FMEA要因評分說明表 76 附錄B、異常零件類別轉換值對照表 78 圖目錄 圖1.1 研究模型架構 4 圖1.2 研究階段步驟與其內容 7 圖2.1 切割式分群法 10 圖2.2 以MST方式群集之結果 12 圖2.3 自組織映射網路分群法示意 13 圖2.4 導線架式封裝製程流程圖 22 圖2.5 基板式封裝製程流程圖 23 圖2.6 銲線動作圖 24 圖2.7 完成銲線之晶粒與導線架示意圖 25 圖2.8 雷射模組示意圖 28 圖2.9 雷射系統圖 28 圖4.1 SPSS 10.0作業環境 43 圖4.2 MATLAB 6.5作業環境 43 圖4.3 實驗架構 44 圖4.4 K-means於SPSS參數設定 46 圖4.5 K-means分群結果分佈圖 47 圖4.6 階層式分群法於SPSS參數設定 53 圖4.7 階層式分群結果分佈圖 54 圖4.8 匯入MATLAB群聚技術之資料欄位 61 圖4.9 自組織映射分群長條圖 63 表目錄 表2.1 以失效對系統的影響做為評定準則 18 表2.2 以失效機率的高低做為評定準則 18 表3.1 機台異常分類依據(機台編號:BL005) 32 表3.2 機台失效事件資料內容 33 表3.3 製程異常分類依據(部分內容定義) 34 表3.4 製程失效事件資料內容 35 表3.5 Machine Event主索引鍵 36 表3.6 Manufacture Event主索引鍵 36 表3.7 列聯表架構 37 表3.8 選擇輸入的變數欄位 38 表3.9 Marking失效事件關聯邏輯法則 40 表3.10印字異常之FMEA資料內容 41 表4.1 K-means分群方法的結果 47 表4.2 K-means分群方法詳細結果-異常零件類別 48 表4.3 K-means分群方法詳細結果-嚴重度 50 表4.4 K-means分群方法詳細結果-發生次數 51 表4.5 K-means分群方法詳細結果-RPN值 52 表4.6 階層式分群方法的分群結果 54 表4.7 階層式分群方法詳細結果-異常零件類別 56 表4.8 階層式分群方法詳細結果-嚴重度 57 表4.9 階層式分群方法詳細結果-發生次數 58 表4.10階層式分群方法詳細結果-RPN值 59 表4.11 MATLAB網路參數設定 62 表4.12 自組織映射分群法的分群結果 64 表4.13 自組織映射分群法詳細結果-異常零件類別 65 表4.14 自組織映射分群法詳細結果-嚴重度 66 表4.15 自組織映射分群法詳細結果-發生次數 67 表4.16 自組織映射分群法詳細結果-RPN值 68 表4.17 嚴重失效事件分群的關聯法則搜尋結果 69

    參考文獻
    丁一賢、陳牧言,民94,資料探勘,滄海書局,臺中市。
    小野寺勝重,民86,FMEA手法概要,日本科學技術連盟。
    李培端,2002,半導體製程資料特徵萃取與資料挖礦應用,科技管理學刊,第七卷,第一期,137-160。
    林文俊,民93,以資料探勘及線上分析處理技術支援醫療管理決策,國立屏東科技大學高階經營管理研究所,碩士論文。
    林志杰,民95,應用資料探勘技術建立中西醫腦中風診斷模型之研究,長庚大學資訊管理研究所,碩士論文。
    陳順宇、鄭碧娥,民93,統計學,華泰書局,臺北市。
    葉怡成,民90,類神經網路模式應用與實作,儒林圖書,臺北市。
    鍾秋英,民92,資料挖掘應用於產品失效模式與效應分析以印刷電路板業為例,私立元智大學工業工程與管理研究所,碩士論文。
    鍾文仁、陳佑任,民92,IC封裝製程與CAE應用,全華科技圖書股份有限公司,臺北市。

    Arunajadai, S.G.., Uder, S.J., Stone, R.B., and Tumer, I.Y., 2004, Failure Mode Identification through Clustering Analysis, QUAL. Reliab. Engng. Int., 20, 511-526
    Feldmann, K., and GÖhringer, J., 2001, Internet-Based Diagnosis of Assembly Systems, Annals of the CIRP, 50, 5-8.
    Ganti, V., Ramarkrishnan, R., Gehrke, J., Powell, A., and French, J., 1999, Cluster Large Datasets In Arbitrary Metric Spaces, Proceedings of the 15th International Conference on Data Engineering, Sydney, Australia, 502-511.
    Guha,S., Rastogi, R., and Shim, K., 1998, CURE: An Efficient Clustering Algorithm For Large Databases, Proceedings of CM SIGMOD International Conference on Management of Data, New York, 73-84.
    Guha,S., Rastogi, R., and Shim, K., 1999, ROCK: A Robust Clustering Algorithm ForCategorical Attributes, Proceedings of the 15th International Conference on Data Engineering.
    Han, J. and Kamber, M., 2001, Data Mining:Concepts and Techniques, Morgan Kaufmann Publishers, San Francisco.
    Huang, G..Q., Shi, J., and Mak, K.L., 2000, Failure Mode and Effect Analysis (FMEA) Over the WWW, Int J Adv Manuf Technol, 16, 603-608.
    Kaufman, L. and Rousseeuw, P.J., 1990, Finding Groups in Data: An Introduction to Cluster Analysis.
    Kohonen, T., 1981, Self- Organization and Associative Memory, 2nd edition, Springer-Verlag, New York .
    Kusiak, A. and Kurasek, C., 2001, Data mining of printed-circuit board defects , IEEE Transactions on Robotics and Automation and Cybernetics, 17(2), 191-196.
    McQueen, J.B., 1967, Some Methods of Classification and Analysis of Multivariate Observations, Proceedings of the 5th Berkeley Symposium on MathematicalStatistics and Probability, 281-297.

    下載圖示 校內:2009-08-13公開
    校外:2011-08-13公開
    QR CODE