| 研究生: |
張振禎 Chang, Chen-Chen |
|---|---|
| 論文名稱: |
DIP、PIV及BIV應用於複合式平台之碎波流場特性研究 Application of DIP、PIV and BIV Techniques to Breaking Wave-Induced Flow Fields over Step-type Profile |
| 指導教授: |
許泰文
Hsu, Tai-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 質點影像測速儀 、氣泡影像測速儀 、數位影像處理 |
| 外文關鍵詞: | Particle Image Velocimetry, Bubble Image Velocimetry, Digital Image Processing |
| 相關次數: | 點閱:147 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文應用質點影像測速 (Particle Image Velocimetry,PIV) 及氣泡影像測速(Bubble Image Velocimetry,BIV),搭配數位影像處理技術 (Digital Image Processing,DIP) 等非侵入式量測技術,量測波浪通過複合式平台斜坡底床水位與流場變化情形,並藉由重複多次相同試驗運用整體平均法來分離碎波流場之平均與擾動速度。此外,由於碎波影像中的氣泡區域與非氣泡區域劃分不清,造成流場分析上的困難,故本文利用影像處理技術先行將影像中之氣泡與非氣泡區域界定之後才進行流場分析。本文也應用CCD (Charge Coupled Device) 攝影機以平視攝影方式拍攝一系列波浪試驗影像,並透過數位影像處理技術,自動偵測波浪連續水位變化資料。本文同時將所量測到之速度場進行平均速度、渦流、流線、紊流動能、水平及垂直紊流擾動量、紊流剪應力、紊流消散分佈等特性分析。
本文由實測數據分析波浪於複合式平台斜坡底床傳遞之流場時空變化。從量測結果顯示,波浪碎波後產生大量氣泡團,氣泡團剛形成時,其氣泡團內速度大部分以大於波速或是約等同於波速向前傳遞,最大速度可達1.26 ,而波浪水體內之速度分佈與淺水波理論大抵相符。氣泡團下緣靠近底床處因向離岸速度交會與分離形成速度緩速區。氣泡團內之紊流擾動強烈,其顯著的紊流動能、紊流剪應力效應皆發生於氣泡團前緣部分,並隨著波浪傳遞向離岸方向及底床擴散與衰減,而紊流消散分佈亦與紊流動能分佈趨勢一致,因此可得知由碎波所引發之氣泡團可能為近岸碎波帶能量消散的主要因素。
A laboratory measurement on the flow field, turbulence and wave energy of spilling breakers over a step-type profile is presented. Instantaneous velocity fields of propagating breaking waves on a step-type profile were measured using Particle Image Velocimeter (PIV) and Bubble Image Velocimeter (BIV). Variations of water surface elevation were observed by using Charge Coupled Device (CCD) cameras with horizontal posture. An automatic were detection technique was employed by digital image processing to save operational time. Evolution of the ensemble overage flows, vorticities, streamlines, turbulent kinetic energy, Reynold stresses and energy dissipations were obtained from analyzing the data.
The experimental results showed that the initial bubble velocity in the aerated region is faster than phase speed with a factor of 1.26. The velocity profiles are identical to the shallow water theory. It is found that a low flow velocity exists due to an opposite but equal onshore and offshore velocity. Significant turbulent kinetic energy and turbulent Reynolds stress are produced by breaking waves in the front of aerated region , then move offshore and decay. The calculated total energy dissipation rate was compared to that based on a bore approximation.
1.Battjes, J.A., “Surf similarity,” Proc. 14th Int. Conf. coastal Eng., pp. 447-467 (1974).
2.Battjes, J.A., “Surf-zone dynamics,” Annual Review of Fluid Mechanics, Vol. 20, pp. 257-293 (1998).
3.Chang, K.A. and Liu, P.L.F., “Velocity, Acceleration and Vorticity under a Breaking Wave, ” Physical of Fluids, Vol. 10, pp. 327–329 (1998)
4.Cowen, E.A., Sou, I.M., Liu, P.L.F. and Raubenheimer, R., “Particle image velocimetry measurements within a laboratory-generated swash zone,” Journal of Engineering Mechanics-ASCE, Vol. 129(10), pp. 1119-1129 (2003).
5.De Serio, F. and Mossa, M., “Experimental study on the hydrodynamics of regular breaking waves,” Coastal Engineering, Vol.53, pp. 99-113 (2006).
6.Hassan, Y.A., Schmidl, W.D. and Ortiz-Villafuerte, J., “Investigation of Three-dimensional Two-phase Flow Structure in a Bubbly Pipe,” Measurement Science Technology, Vol. 9, pp. 309-326 (1998).
7.Horikawa, K., Nearshore Dynamics and Coastal Processes: Theory, Measurement and Prediction Models, Univ. of Tokyo Press (1988).
8.Huang, Z.C. Hsiao, S.C. and Hwung, H.H., “Observation of coherent turbulent structure under breaking waves,” International Journal of Offshore and Polar Engineering, Vol. 19(1), pp. 15-22 (2009a).
9.Huang, Z.C., Hsiao, S.C., Hwang, H.H. and Chang, K.A., ”Turbulence and energy dissipations of surf-zone spilling breakers,” Coastal Engineering, Vol. 56, pp. 733-746 (2009b).
10.Jansen, P.C.M., “Laboratory observation of the kinematics in the aerted region of breaking waves,” Coastal Engineering, Vol. 9, pp. 453-477 (1986).
11.Kimmoun, O. and Branger, H., “A particle images velocimetry investigations on laboratory surf-zone breaking waves over a sloping beach,” Journal of Fluid Mechanics, Vol. 588, pp. 353-397 (2007).
12.Lin, C., Hsieh, S. C., Kuo, K. J., and Chang, K. A., “Velocity measurements of periodic oscillatory flow in a vertical drop pool using particle image velocimetry and bubble image velocimetry,” Proceedings of the 7th International Symposium on Particle Image Velocimetry, Roma, Italy, (2007).
13.Lin, C., Hsieh, S. C., Lin, W. J. and Chang, K. A., “Measurement of velocity field in the aerated region of a hydraulic jump using Bubble Image Velocimetry,” 17th International Symposium on Transport Phenomena, Toyama, Japan, (2006).
14.Lin, P. and Liu, P.L.F., “A numerical study of breaking waves in the surf zone,” Journal of Fluid Mechanics, Vol. 359, pp. 239-264 (1998).
15.Lindken, R. and Merzkirch, W., “A novel PIV technique for measurements in multi-phase flows and its application to two-phase bubbly flows,” Experiments in Fluids, Vol. 33, pp. 814-825 (2002).
16.Melville, W.K., Veron, F. and White, C.J., “The velocity field under breaking waves: coherent structures and turbulence,” Journal of fluid Mechanics, Vol. 454, pp. 203-233 (2002).
17.Mogi, A., “On the shore types of the coasts of Japanese islands,” Geogr. Review Japan, Vol. 36, pp. 245-266 (1963).
18.Perlin, M., He, J. and Bernal, L.P., “An experimental study of deep water plunging breakers,” Physics of Fluids, Vol. 8, pp. 2365-2274 (1996).
19.Nagayama, S., Study on the types of the coasts of wave height and energy in the surf zone, Bachelor thesis, Yokohama National Univ. In Japanese (1983).
20.Petti, M. and Longo, S., “Turbulence experiments in the swash zone,” Coastal Engineering, Vol. 43, pp. 1-24. (2001).
21.Ray, S., Applied photographic option, Focal Press (2002).
22.Ryu, Y., Chang, K.A. and Lim, H.J., “Using of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater,” Measurement Science and Technology, Vol. 16, pp. 1945-1953 (2005).
23.Ryu, Y., Chang, K.A. and Mercier, R., “Runup and green water velocities due to breaking wave impinging and overtopping,” Experiments in Fluids, Vol. 45, pp. 883-898 (2007).
24.Stansby, P.K. and Feng, T., “Kinematics and depth-integrated terms in surf zone waves from laboratory measurement,” Journal of Fluid Mechanics, Vol. 529, pp. 279-310 (2005).
25.Svendsen, I.A., “Analysis of surf zone turbulence,” Journal of Geophysical Research-Oceans, Vol. 92(C5), pp. 5115-5124 (1987).
26.Ting, F.C.K. and Kirby, J.T., “Observation of undertow and turbulence in a laboratory surf zone,” Coastal Engineering, Vol. 24, pp. 51-80 (1994).
27.Ting, F.C.K. and Kirby, J.T., “Dynamics of surf zone turbulence in a strong plunging breaker,” Coastal Engineering, Vol.24, pp. 177-204 (1995).
28.Ting, F.C.K. and Kirby, J.T., “Dynamics of surf zone turbulence in a spilling breaker,” Coastal Engineering, Vol. 27, pp. 131-160 (1996).
29.陳逸芬,「應用PIV於水躍速度場之分析探討」,碩士論文,國立中興大學土木工程研究所,台中,(2008)。
30.蔡金晏,「近岸碎波與波浪布拉格共振之流場數值模擬研究」,博士論文,國立成功大學水利及海洋工程研究所,台南,(2009)。
31.歐善惠、許泰文、林士翔、張振禎、林建鋒,「波浪通過人工潛礁變形實驗量測與數值模擬」,第三十一屆海洋工程研討會論文集,台中,273-278頁,(2009)。
校內:2012-08-05公開