簡易檢索 / 詳目顯示

研究生: 曾俊欽
Tseng, Chuan-Chin
論文名稱: 推拉式壓電噴嘴之製作及噴霧特性
Fabrication and Atomization Characteristics of Piezoelectric Micro-nozzle with Push-Pull Feeding
指導教授: 劉建惟
Liu, Chien-Wei
王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 130
中文關鍵詞: 濕蝕刻微噴嘴(微霧化器)霧化壓電式濕蝕刻霧化微噴嘴(微霧化器)乾蝕刻微噴嘴(微霧化器)乾蝕刻霧化濕蝕刻壓電式霧化壓電式濕蝕刻乾蝕刻微噴嘴(微霧化器)壓電式乾蝕刻
外文關鍵詞: atomization, micro-nozzle, piezoelectric, dry etching, wet etching, piezoelectric, micro-nozzle, atomization, atomization, micro-nozzle, piezoelectric, wet etching, dry etching, dry etching, wet etching, piezoelectric, micro-nozzle, dry etching, atomization, wet etching
相關次數: 點閱:159下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討微噴嘴(微霧化器)在壓電片驅動下,液體產生噴霧或單液滴顆粒之特性。所設計之壓電噴嘴裝置由上下兩片各為20mm×10mm×250μm矽晶片組成。其上下兩面利用MENS加工成為12mm×3mm×20μm之薄膜,上面之薄膜具有兩個進出料口,其直徑為400μm。上薄膜黏貼一片12mm×4mm×0.7mm之壓電片,下薄膜中心有一個直徑為50μm之噴口。另一噴嘴之下蓋板為10mm×10mm×0.2mm蓋玻片,在蓋玻片中心以雷射加工成80μm之噴口。封裝完成之噴嘴有二,其一為噴嘴孔徑50μm,艙體高度460μm,艙體體積16.56nl;另一為噴嘴孔徑80μm,艙體高度230μm,艙體體積8.28nl之微噴嘴(微霧化器)裝置,用以探討不同成分液體介質之霧化特性。本實驗首先以有限元素分析法,分析矽薄膜之自然頻率及應變特性,作為壓電噴嘴驅動之依據,以產生微液滴。液體供應方式分別為液體之高度水頭高,Syringe Pump推進與抽拉等三種形式,使液體進入噴嘴。實驗結果顯示,液體以高度水頭高的方式注入噴嘴艙體中,即使在壓電驅動下,亦未能產生噴霧。以針筒幫浦(以下稱Syringe Pump)將液體由雙進口推入艙體中,流體因壓力作用下,由噴口孔徑為80μm噴出形成液柱,則在壓電驅動頻率為共振頻率4272~5696之正弦波,會產生均勻尺寸之單液滴。若液體由儲水槽以高度水頭銜接噴口進水端,以水受重力推入艙體中,噴口洩水端銜接Syringe Pump,依靠其抽動液體時,則在壓電驅動頻率242KHz之方波,其波形對稱性30%至50%,可由噴口50μm產生產生之液滴直徑為13μm至18μm之單液滴,驅動頻率是在共振頻率以外則產生噴霧。若工作液體分別為甘油重量百分比10wt%、20wt%、30wt%、40wt%之溶液,則在壓電驅動頻率為236KHz時,產生連續噴霧。在工作流體為水的實驗結果顯示,此壓電微噴嘴(微霧化器)以高度水頭與針筒幫浦抽拉液體之供料方式,在高驅動頻率下可以產生較小之單液滴顆粒,故可發展為高速、高解析度之噴印技術。

    This paper investigates the characteristics of a piezoelectric micro-nozzle for the production of mono-size droplet and spray. The micro-nozzle was fabricated by MEMS processes. It consists of the upper and lower chips with dimensions of 20mm×10mm×250m. The upper chip is the silicon chip with two holes having diameter of 400m, one for the liquid supply, the other for liquid outlet in order to control the injection through the nozzle. A piezoelectric chip with size 12mm×4mm×0.7mm was attached on the upper silicon chip to drive the liquid injection through the nozzle. The lower chip has two designs. One is the silicon chip with a nozzle orifice of 50m in diameter. Another is the glass chip with a nozzle orifice of 80m in diameter. Different working media were employed to characterize the micro-nozzles. Finite element analysis was used to analyze the characteristics of the silicon chip and to control the liquid supply. Liquids were supplied in three ways. The first one was supplied by the elevation head of the working media. The second one was supplied by the pushing mode of the syringe pump at the inlet port. The third one was supplied with the combination of elevation head and the pulling mode of the syringe pump at the outlet port. Results showed that no spray injection took place with liquid supply by elevation head even driven by PZT. However, with liquid supply by the pushing mode of the syringe pump, a single stream of mono-sized droplets was injected through the micro-nozzle with 80m orifice under the driving frequency ranging from 4272 Hz to 5695Hz of PZT. It turned out that the diameter of the droplets was from 206m to 183m under different driving frequencies. Furthermore, with the liquid supply by elevation head as well as the pulling mode of the syringe pump, mono-size droplets with diameter of 16m were injected in turns of DOD basis as the PZT was driven by the resonant frequency, 242 kHz, of the micro-nozzle. It should be noted that the micro-nozzle produces a spray as the PZT was driven by the frequencies other than the resonant frequency of the micro-nozzle. Tests were also performed with the working media as the mixture of water and glycerol of 10wt%, 20wt%, 30wt% and 40wt%. With the liquid supply by elevation head as well as the pulling mode of the syringe pump, atomization took place as the PZT was driven at the frequency of 236 kHz under a voltage of 150Vpp. The result shows in a single stream of droplets with droplet size of range from 13m to 18m of the working medium of water for 30℃. It is concluded that this micro-nozzle can be used in the application of printing service with high speed and high resolution.

    摘要 I Abstract III 致謝 V 目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-2-1 單液滴形成之原理 2 1-2-2 連續式(continuous)單液滴(mono-sized droplet)噴嘴 3 1-2-3供需式(drop-on-demand) 單液滴噴嘴 4 1-3 研究動機與目的 6 第二章 壓電噴嘴作動原理與壓電噴嘴設計 8 2-1 單液滴(Mono-Size Droplet)產生機制 8 2-1-1 連續式噴嘴作動原理 8 2-1-2 供需式噴嘴作動原理 11 2-2壓電致動式噴頭作動原理 17 2-2-1 壓電效應 17 2-2-2 壓電材料分類 18 2-2-3 壓電方程式 19 2-3壓電致動式噴嘴設計及薄膜模擬 24 2-3-1 有限元素分析法簡介 24 2-3-2 有限元素求解 25 2-3-3 模擬參數設定、邊界條件與結果 26 2-4 實驗設備配置 27 2-4-1 粒子影像測速技術 27 第三章 微噴嘴(微霧化器)製程 30 3-1 微噴嘴(微霧化器)製程設備介紹 30 3-2 化學濕式蝕刻 33 3-2-1 濕式蝕刻的反應機制 34 3-2-2 TMAH蝕刻液(Tetramethyl ammonium hydroxide) 36 3-2-3 氫氧化鉀溶液(KOH) 38 3-2-4 KOH濕蝕刻製程 38 3-3陽極接合技術 40 3-4 氧化製程 42 3-5 金屬濺鍍蒸鍍製程 43 3-5-1 金屬濺鍍(sputter) 43 3-5-2 金屬蒸鍍 (thermal coater) 44 3-6 感應偶合電將蝕刻(ICP) 44 3-6-1 微影技術(Photolithograghy) 44 3-6-2 乾式蝕刻 47 3-6-3 電感應耦合電漿反應離子蝕刻機( ICP) 49 第四章實驗結果與討論 57 4-1 液滴產生過程 57 4-1-1 連續式(Continuous)壓電致動液滴產生過程 57 4-2 供需式(Drop-on-Demand)單液滴產生過程 60 4-2-1利用高度水頭高(Elevation Head)進料之液滴產生過程 61 4-2-2高度水頭高及Syringe Pump抽拉作動之液滴產生過程 62 (流體為水) 62 4-2-3高度水頭高及Syringe Pump抽拉作動之液滴產生過程 64 (流體為甘油/水) 64 第五章 結論 67 未來工作 69 參考文獻 125 自述 130

    [1] W. L. Buehner, J.D. Hill, T. H. Williams and J. W. Woods, “Application of Ink Jet Technology to a Word Processing Output Printer”, IBM Journal of Research and Development Vo. 21,No.1 pp.2-9, Jan., 1977.

    [2] Swayer Fuller and Jospher Jacobson, “Ink Fabricated Nano Particle”, MEMS, IEEE Microelectromech. Syst. Conf. pp.138-141,2000.

    [3] Richard G. Sweet, “ High Frequency Recording with Elecrostatically Deflected Ink Jet”, The Review of Scientific Instruments, Volume 36, Number 2, pp.131-136, 1965.
    [4] H. C. Lee, “Droplet Formation in a Liquid Jet”, IBM J. Res. Develop., pp364-369, July 1974.

    [5] W. T. Pimbley, “Droplet Formation form a Liquid Jet :Alinear One-Dimensional Analysis Considered as a Boundary Value Problem”, IBM J. Res. Develop., PP. 148-156, March 1976.

    [6] E. K. Dabora, “Production of Mondisperse Sprays”, http:rsi.aip.org/rsi/copyright.jsp vol.38, Number 4, 1967.

    [7] G. Brenn, T. Helpio and F. Dirst, “A new apparatus for the producton of monodisperse sprays at high flow rates”, Chemical Engineering Science, vol. 52 No. 2. pp 237-244, 1997.

    [8] F. C. Lee, “PZT Printing Applications, Technologies, New Devices”, Ultrasonic Symposium, pp.693-697, IEEE, 1988.

    [9] W. R. Whel, “The Present State of the Art”, Compeuro ’89-3rd Annual European Computer Conference Hamburg, West Germany, pp.46-52, May, 1989.

    [10] T Lauell, L Wallman and J Nilsson, “Design and development of a silicon microfabricated flow-through dispenser for on-line picolitre sample handing”, J. Micromech. Microeng. Vol.9 pp.369-376. 1999.

    [11] B.de Heij, B Van derschoot, Hu Bo, J. Hess and N.F. de Rooij, “Characterisation of a fL droplet generator for inhalation drug therapy”, Sensors and Actuators 85 pp.430-434. 2000.

    [12] Songmei Yuan*, Zhaoying Zhou, Guohui Wang and Canggeng Liu, “MEMS-based piezoelectric array microjet”, Microelectronic Engineering 66 pp.767-772. 2003.

    [13] Gőkhan Percin, Laurent Levina), and Butrus T. Khuri-Yahub, “Piezoelectrically actuated droplet ejector”, Rev Sci. Instrum. 68 (12), December 1997.

    [14] Gőhan Percin, Gőksenin G. Yaralioglu and Butrus T. Khuri-Yakub, “Micromachined droplet ejector arrays”, Review of Scientific Instruments Volume 73, Number 12, December 2002.

    [15] Chris P. Steinert, ingo Goutier, Oliver Gutmann, Hermann Sandmaier, Martina Daub, Bas e Heij and Roland Zengerle, “A highly parallel picoliter dispenser with an integrated novel capillary channel structure”, Sensors and Actuators A 116 pp.171-177 ,2004.

    [16] 葉吉田, “噴墨列印技術在電子工業之應用” ,財團法人工業技術研究院.

    [17] 噴墨列印技術在電子工業之應用,http://www.mrl.itri.org.tw/yflow/jet-99/jet-99.htm

    [18] 方昱仁,“單體單噴孔壓電致動式噴液裝置設計與製造” 國立台灣大學機械工程研所碩士論文,2002。

    [19] B. David, J. Donald and Wallace, Hayes, “Solder Jet Technology Update”, Proceedings, ISHM’97. 1997.

    [20] J. Hayes Donald, B. Wallace David and W. Royall Cox, “MicroJet Printing of Solder and Polymers multi-chip Modules and Chip-Scale Packages”, IMAPS`’99. 1999.

    [21] H. Le, “Progress and Trends in Ink-jet Printing Technology”, Journal of Imaging Science and Technology, Vol.42, No.1, p49~p62, January/February 1998.

    [22] 林郁欣,整合微鉑溫度感測器於熱泡致動器之發展研究,國立成功大學航空太空工程學系碩士論文, 2003。

    [23] S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, “A Low Power, Small Electrostatically-Driven Commercial Inkjet Head”, the Eleventh Annual International Workshop on Micro Electro Mechanical Systems, IEEE, Jan. 25-29, P63~68, 1998.

    [24] S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, “A high Resolution, Electrostatically-Driven Commercial Inkjet Head”, the Thirteenth Annual International Conference on Micro Electro Mechanical Systems, p793~p798, IEEE, Jan. 23~27, 2000.

    [25] D.Huang and E. S. Kim, ”Micromachined Acoustic-Wave Liquid Ejector”, IEEE Journal of Microelectromechanical Systems,Vol.10,Issue 3,Sep.,2001.

    [26] B. D. Bogy, F. E. Talke, “Experimental and Theoretical Study of Wave Propagation Phenomena in Drop-on-Demand Ink Jet Devices”, IBM J. Res. Develop., vol.28, pp.314-321, 1984.

    [27] 周卓明, 壓電力學, 全華科技圖書股份有限公司,1992年初版.

    [28] 吳鉉忠,壓電式微液滴噴射數學模擬系統之開發與實驗研究,國立成功大學材料科學及工程學系博士論文,2004.

    [29] L. M. Lourenco, A. Krothapalli and C. A Smith , “Particle Image Velocimetry”, Advances in Fluid Mechanics Measurements, Lecture Notes in Engineering-45, Springer-Verlag, pp. 127-200, 1989.

    [30] L. M. Lourenco, A. Krothapalli, J. M. Buchlin and M. L. Riethmuller, “A Non-Invasive Experimental Technique for the Measurement of Unsteady Velocity and Vorticity Fields”, AIAA Jornal, 24, pp. 1715-1717, 1986.

    [31] L. M. Lourenco and A. Krothapalli, “Stereoscopic and Time Resolved PIV Measurements in High-Speed Flows”, AIAA, 2180-2194, 2004.

    [32] M. Raffel, C. E. Willert and J. Kompenhans, “Particle Image Velocimetry–A Practical Guide”, Springer, ISBN 3-540-63683-8, 1998.

    [33] C. Willert, M. Raffel, J. Kompenhans, B. Stasicki and C. La’Hler, “Recent Applications of Particle Image Velocimetry in Aerodynamic Research”, Flow Meas. Instrum., 7(3/4). pp. 247-256, 1996.

    [34] A. P. Newbery, T. Rayment, and P. S. Grant, “A Particle Image Velocimetry Investigation of In-Flight and Deposition Behavior of Steel Droplets During Electric Arc Sprayforming”, Materials Science and Engineering A, 383, pp. 137-145, 2004.

    [35] R. J. Adrian, “Twenty Years of Particle Image Velocimetry”, Experiments in Fluids, 39, pp. 159-169, 2005.

    [36] M. Menon, and W. T. Lai, “Key Considerations in the Selection of Seed Particles for LDV measurements”, Laser Anemometry Advances and Applications, ASME, pp. 719-730, 1991.

    [37] Y. Ikeda, M. Nishigaki, M. Ippommatsu and T. Nakajima, “Optimum Seeding Particles for Successful Laser Doppler Velocimeter Measurements”, Part. Part. Syst. Charact., 11, pp. 127-132, 1994.

    [38] M. Nishigaki, M. Ippommatsu, Y.I kedaand T. Nakajima, “New High-Performance Tracer Particles for Optical Gas Flow Diagnostics”, Meas. Sci. Technol., 3, pp. 619-621, 1992.

    [39] K. H. Lee, C. H. Lee, and C. S. Lee, “An Experimental Study on the Spray Behavior and Fuel Distribution of GDI Injectors Using the Entropy Analysis and PIV Method”, Fuel, 83, pp. 971-980, 2004.

    [40] 黃堯民,光纖式懸臂樑結構微型壓力感測器,中原大學醫學工程學系碩士論文,2003.

    [41] B.Richter, G. Rottenkolber, M. Hehle, K.Dullenkopf and S. Wittig, “Investigation of Fuel Sprays by Means of Stereoscopic Particle Image Velocimetry and Highspeed Visualization”, ILASS-Europe 2001, Zurich, 2-6 September, 2001.

    [42] H. Robbin and B. Schwartz, “Chemical etching of silicon-I. The system, HF, HNO3 and H2O”, Journal of the Electrochemical Society, Vol. 106, pp. 505-508, 1959.

    [43] F. C. Frank and M. B. Ives, “Orientation-dependent dissolution of germanium”, Journal of Applied Physics Vol. 31, No. 11, pp.1996-1999, 1960.

    [44] D.L. Kendall, “On etching very narrow grooves in silicon”, Applied physics Letters, Vol. 26.195-198, 1975.

    [45] E. Bassous, “Fabrication of novel three-dimensional microstructrues by the anisotropic etching of (100) and (110) silicon”, IEEE Transactions on Electron Devices, Vol. ED-25, No. 10, pp. 1178-1185, 1978.

    [46] K. Sato et al., “Characterization of Orientation-Deendent Etching Properties of Single-Crystal silicon: Effects of KOH Concentration.”, Sensors and Actuators, A 64, pp.87-93, 1998.

    [47] I. Zubel., M. Kramkowska, “The effect of Alcohol Additives On Etching Characteristics In KOH Solutions”, Sensors and Actuators A 101, pp.255-261, 2002

    [48] Wen-June Cho ,Wei-Kuo Chin and Ching-Tung Kuo, “Effects of alcoholic moderators on anisotropic etching of silicon in aqueous otassium hydroxide solutions”, Sensors and Actuators A 116 ,pp. 357-368, 2004.

    [49] Hirshi Tanakaa,c,*, Shuichi Yasmahitac, Yoshitsugu Abec, Mitsuhiro Shikidab and Kazuo satoa, “Fast etching of silicon with a smooth surface in high temperature ranges near to boiling point of KON solution”, Sensors and Actuators A114, pp.516-520 ,2004.

    [50] O. Tabata, R. Asahi, H. Funabashi and Sugiyama, S., “Anisotropic etching of silicon in TMAH solutions”, Sensors and Actuators A, Vol. A34, pp. 51-57, 1992.

    [51] L. T. L. Tong, W. K Choi and C. W. Chong, “TMAH etching of silicon and the interaction of etching parameters”, Sensors and Actuators A, Vol. A63 pp. 243-249, 1997.

    [52] Y. K. Bhatnagar, and A. Nathan, “On pyramidal protrusions in anisotropic etching of <100>silicon”, Sensors and Actuators A, Vol. A36, pp. 233-240, 1993.

    [53] A. Merlos, M. Acero, M. H. Bao, J. Bausells and J. Esteve, “TMAH/IPA anisotropic etching characterstcs”, Sensors and Actuators A, Vol A37-A38, pp. 737-734, 1993.

    [54] K. Bisws , S. Das, D. K. Maurya, Kal S. Lahiri S.K.., “Bluk micromachining of silicon in TMAH-base etchants for aluminum passivation and smooth surface”, Microelectronics Journal,37 , pp. 321-327 ,2006.

    [55] K. B Albaughb, E. P. Cade and D. H. Rasmussen, “Mechanisms Of Anodic Bonding Of Silicon To Pyrex Glass”, Solid-State Sensor and Actuator Workshop, Technical Diqest., IEEE, 1998.

    [56] W. A. Brantley, “Calculated elastic constant for stress problems associated with semiconductor divices”, J. Appl. Phys., vol.44, pp. 534-535, 1973.

    [57] Marc Madou, “Fundamentals of Microfabrication”, CRC Press LLC, 1997.

    下載圖示 校內:2008-08-08公開
    校外:2008-08-08公開
    QR CODE