| 研究生: |
吳雅娟 Wu, Ya-Chuan |
|---|---|
| 論文名稱: |
以模糊理論建構台灣上市櫃電子公司
財務危機預警模型與實證 The Construction of a Financial Alert Model for the Listed Electronic Companies in Taiwan by Using Fuzzy Theory |
| 指導教授: |
張紹基
Chang, Shao-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 高階管理碩士在職專班(EMBA) Executive Master of Business Administration (EMBA) |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 風險指標 、推論規則 、隸屬函數 、模糊理論 、財務危機 、模糊預警 |
| 外文關鍵詞: | membership function, inference rule, risk index, financial crisis, fuzzy alert, fuzzy theory |
| 相關次數: | 點閱:82 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
在相關金融機構進行授信或投資人進行投資行為之前,必須對於目標公司的財務狀況有所了解,避免誤觸地雷公司而蒙受損失。本研究主要係建構模糊預警模型,以對公司發生財務危機的可能性進行分析預測,提供相關機構或投資人財務危機風險的參考警訊,規避可能遭受的損失。
林金賢等(2004) 建立的模糊專家系統架構只考慮財務面因素,選取三項財務比率(現金流量比率、負債比率和資產報酬率)作為財務危機預警模式的指標變數。本模糊預警模型則選取流動比率、負債比率、稅後淨利率和存貨週轉率、應收帳款週轉率與總資產週轉率的乘積作為財務性模糊輸入變數。另外,選取董監持股%、董監質押%、獨立董監席次、董事長兼總經理、監察人內部化、席次控制%、控制持股%、財務主管異動次數、會計師保留意見等九種和公司治理相關的指標作為積分制的非財務性模糊輸入變數,並由專家制定模糊推論規則庫,建立模糊預警模型的架構。
以軟體實現預警模型,分別計算問題公司和正常公司的風險指標值進行比較和檢定,並設定警訊規範提供使用者參考。風險指標是比較各公司財務狀況的相對性指標,公司發生財務危機的原因錯綜複雜,指標值只代表相對可能性而非絕對必然性,但是指標的趨勢所顯露的公司財務狀況走向的意義更值得重視。
將模糊理論應用於企業管理等領域有其適用之處,其彈性的架構可提供設計者更多的自由度,藉由調整各項要素,使得系統的表現更符合設計者的要求。由實證的結果,我們對本研究的模型進行檢討,思考改善鑑別度和敏感性的方向,並且提出後續研究方向的展望。本研究的貢獻是使用模糊理論考慮包含財務性和非財務性的五大構面以建構預警模型,對於上市櫃電子公司的財務風險提供客觀的評估模式,以便使用者參考財務風險指標決定投資策略。
Abstract
Prior to the investment, the banking institute and the investor should take the financial situation of the target company into consideration to avoid the investment loss. The main goal of this thesis is to construct a fuzzy financial alert model to forecast the possibility of the financial crisis in the corporation. The model result can provide the risk reference of the financial crisis.
Lin(2004) considered only three input factors, including cash flow ratio、debt ratio and total property return ratio. However, our fuzzy financial alert model selects flow ratio、debt ratio and after tax net profit ratio as the financial fuzzy input variables as well as the product of circulation ratios of stock、account receivable and total property. In addition, the non-financial input variable, including 9 elements related to the company management, is also taken into evaluation. The expert then sets up the fuzzy inference rule base to construct the fuzzy financial alert model. Application software is utilized to implement this model and to calculate the corresponding risk indices for the normal group and the risky group. We compare these risk indices to set up the alert criterion for user reference. The risk index indicates the corresponding possibility, not the absolute certainty. However, the index tendency reveals an important meaning to the company financial situation.
Fuzzy theory is applicable to the management field because of its flexibility and design freedom. One of the construction processes is proposed in this research to implement the fuzzy model. It is expected to enhance the system performance by adjusting these flexible factors. Based on the result, we discuss the model properties and propose the improvement direction and the prospective research. The contribution of this research is to provide an investment reference about the financial risk in order that the user is able to waive the financial loss in advance.
中文文獻
1. 李致寬.(1996). 財務危機預測模型之探討-以台灣地區股票上市發行公司為例. 證券金融季刊,49期.
2. 杜詩敏. (2003). 不同之類神經網路應用於財務危機預測模型之比較.樹德科技大學,高雄
3. 林文修. (2000). 演化式類神經網路為基底的企業危機診斷模型:智慧資本之應用. 國立中央大學,新竹.
4. 林金賢,陳育成,劉沂佩,&鄭育書. (2004). 具學習性之模糊專家系統在財務危機預測上之應用. 管理學報,21卷,3期,291~309.
5. 施麗玉. (2002). 農會信用部財務危機預測模型之研究-模糊類神經網路系統之應用. 國立中興大學,台中.
6. 徐淑芳. (1998). 台灣上市公司財務危機預警-應用多變量cusum時間序列分析.國立東華大學,花蓮.
7. 郭瓊宜. (1993). 類神經網路在財務危機預警模式之應用. 淡江大學,台北.
8. 許志鈞. (2002). 企業財務危機預警模式-基因演算法、倒傳遞網路與遞迴網路之應用.台北大學,台北.
9. 陳明賢. (1985). 財務危機預測之計量分析研究. 國立台灣大學,台北.
10. 陳肇榮. (1982). 運用財務比率預測企業財務危機之實證研究. 國立政治大學, 台北.
11. 陳麗芳. (2000). 財務艱困公司股票模糊多準則評選模式之研究-以台灣上市上櫃電子公司為例. 義守大學, 高雄.
12. 黃志仁. (2001). 子公司操作母公司股票-操作行為,宣告效果與內部人交易. 國立中央大學, 新竹.
13. 黃振豐,&呂紹強. (2000). 企業危機預警模式之研究—以財務及非財務因素構建.當代會計,第一卷,第一期.
14. 黃焜煌,&卓統佑. (1998). 模糊邏輯在財務危機預測上之應用. 朝陽學報,第三期,47~68.
15. 黃焜煌,&卓統佑. (2000). 模糊評等趨勢對台灣上市電子公司財務危機之預測. 朝陽學報,第五期,241~259.
16. 楊浚泓. (2001). 考慮財務操作與合併報表後之財務危機預警模式. 國立中央大學, 新竹.
17. 鄭柏翊. (2000). 應用遺傳規劃於企業危機診斷模式之建構. 國立台北科技大學, 台北.
18. 潘玉葉. (1989). 台灣股票上市公司財務危機預警分析. 淡江大學, 台北.
19. 賴以建. (2002). 基因演算法、類神經網路及決策樹於財務危機預警模式之應用研究.台北大學, 台北
20. 蘇文娟. (2000). 台灣上市企業財務危機預測之實證研究. 國立東華大學,花蓮.
外文文獻
1. Altman, E.I.(1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy using Capital Market Data. Journal of Finance
(September): 589-609.
2. Atiya, A.F. (2001). Bankruptcy Prediction for Credit Risk using Neural Networks: A Survey and New Results. IEEE transactions on neural networks (12).
3. Beaver, W.H. (1966). Financial Rations as Predictors of Failure. Journal of Accounting Research (4): 71-111.
4. Blum, M. (1974). Failing Company Discriminant Analysis. Journal of Accounting Research (12): 1-25.
5. Collins,R.A. & Green,R.D.,(1982). Statistical Methods for Bankruptcy Forecasting. Journal of Economics and Business,34(4):349-354.
6. Coats, P.K. & L.F.Fant. (1991). A Neural Network Approach to Forecasting Financial Distress. Journal of Business Forecasting (10): 9-12.
7. Deakin,E.B.(1972). A Discriminant Analysis of Predictors of Business Failure. Journal of Accounting Research
8. Grice, J.S. & Dugan, M.T. (2001). The Limitations of Bankruptcy Prediction Models: Some Cautions for the Researcher. Journal Finance and Accounting (l17): 151-166.
9. Jensen, M.C. & Meckling,W.H (1976). Theory of the Firm: Managerial Behavior,Agency Costs and Ownership Structure. Journal of Financial Economics (3): 303-360.
10. Kesner, I.F. & Dalton,D.L. (1986). Boards of Directors and the Checks and Balance of Corporate Governance. Business Horizons (29):17-23.
11. Lensberg, T. , Eilifsen, A. & Mckee,T.E. (2004). Bankruptcy Theory: Development and Classification via Genetic Programming. Journal of
Operational Research.
12. Morck, R. , Shleifer,A. & Vishny,R.W. (1988). Management Ownership and Market Valuation. Journal of Financial Economics (20): 293-315.
13. Mensah, U. (1984). An Examination of the Stationarity of Multivariate Bankruptcy Prediction Models : A Methodological Study. Journal of Accounting Research (Spring) : 380-395.
14. Mckee, T.E. & Lensberg,T. (2001). Genetic Programming and Rough sets: A Hybrid Approach to Bankruptcy Classification. Journal of Operational Research (138): 436-451.
15. Ohlson, J.A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research (Spring): 109-131.
16. Odom, M.D. & Sharda,R. (1990). A Neural Network Model for Bankruptcy Prediction, Ieee Reaserch (12): 163-168.
17. Patton, A. & Baker, J. (1987). Why do Directors Not Rock the Boat. Harvard Business Review (65):10-12.
18. Wilson, R.L. & Sharda, R. (1994). Bankruptcy Prediction using Neural Networks. Decision Support Systems (11): 545-557.
19. Zmijewski, M. (1984). Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting Research (22): 89-82.