簡易檢索 / 詳目顯示

研究生: 歐佩雯
Ou, Pei-wen
論文名稱: 低溫燒結氮化鋁/玻璃複合材料之製程與性能研究
Preparation and properties of LTCC AlN/glass composite materials
指導教授: 鍾賢龍
Chung, Shyan-lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 125
中文關鍵詞: 低溫共燒陶瓷氮化鋁/玻璃複合材料
外文關鍵詞: LTCC, AlN/glass composite materials
相關次數: 點閱:70下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前商業化LTCC材料是使用氧化鋁與玻璃共燒,為了提高其熱傳導值,所以選擇高熱傳導材料氮化鋁來取代氧化鋁,由於LTCC製程溫度在800~1000℃之間,而氮化鋁在高溫下會發生氧化反應,因此本論文研究將分為兩個部份,一為氮化鋁高溫氧化行為;二為氮化鋁/玻璃LTCC製程。
    第一部份在探討不同粒徑的氮化鋁在改變壓力、溫度及添加玻璃粉時的高溫氧化行為,而實驗結果顯示,粒徑越小的氮化鋁粉體因表面積增加的關係其氧化的程度就越大,在低壓下(2~3torr)由於氧分壓降低,氮化鋁的氧化程度與常壓相比則減緩10~15倍,添加玻璃粉後其熔融狀態可潤濕氮化鋁表面並抑制其氧化反應,因此添加玻璃粉或在低壓環境下鍛燒可降低氮化鋁在高溫時的氧化程度。
    而第二部份為低溫燒結氮化鋁/玻璃複合材料,改變不同參數如氮化鋁粒徑、氮化鋁與玻璃之組成比、燒結溫度、壓力及持溫時間等,並由燒結體之緻密性、熱性質、電氣性質及機械強度之分析找出最適化製程。本實驗可得最大熱傳導值為10.874 W/mk與文獻值相近,與目前商業化LTCC材料相比增加了1.7倍,因此添加氮化鋁的確有提升熱傳導值的效果。

    In recent years, many LTCC systems were made up of Al2O3 and glass. However, due to the low thermal conductivity of Al2O3, the LTCC systems of Al2O3 and glass have a poor thermal conductivity. AlN, whose thermal conductivity is 10 times greater than that of Al2O3, can be substituted for Al2O3 to improve the thermal conductivity of LTCC. LTCC process temperature is at 800~1000℃, but AlN will be oxidized in air above 700℃. The thesis includes two parts. The first part is focused on the thermal
    oxidation of AlN powder;The second part is to find an optimal AlN/glass
    LTCC process.
    At part 1, the AlN powder employed in this thermal oxidation study has different particle size, and the main variables are different pressure, temperature, and addition of glass powder. At the results, because the smaller size of AlN has larger specific surface area, the oxidation is remarkably enhanced. Low pressure(2~3 torr) has low oxygen content, and makes AlN oxidation reduce 10~15 times than atmosphere, addition of glass powder in melt point can cover with AlN surface and form a protective layer to retard oxidation. Therefore, addition of glass powder and low pressure can retard
    oxidation behavior of AlN.
    The second part was a new type of LTCC AlN/glass to study the effects of AlN particle size, AlN/glass weight ratio, sintering temperature, pressure, and holding time etc. According to the result of AlN/glass composites density, thermal properties, electronic and mechanical properties, we can find optimal AlN/glass LTCC process. In the study, the highest thermal conductivity is 10.874 W/mK and close to the present research. Comparison with commercial LTCC materials is greater than 1.7 times. Therefore, addition of AlN powder
    can rise up thermal conductivity.

    中文摘要............................................Ⅰ 英文摘要............................................Ⅱ 目錄................................................Ⅳ 表目錄..............................................Ⅷ 圖目錄..............................................Ⅹ 第一章 緒論.........................................1 1-1 氮化鋁簡介......................................1 1-2 低溫共燒陶瓷(LTCC)..............................2 1-3 研究動機........................................5 第二章 理論基礎與文獻回顧...........................8 2-1 氮化鋁的特性....................................8 2-2 氮化鋁合成技術.................................10 2-3 氮化鋁高溫氧化行為.............................15 2-4 氮化鋁與陶瓷氧化物共燒行為.....................17 2-5 熱傳導機構.....................................21 2-6 液相燒結.......................................22 2-7 介電原理.......................................25 2-8 低溫共燒陶瓷(LTCC)材料與製程...................28 2-8.1 陶瓷無機材料粉體.............................29 2-8.2 溶劑(solvent)................................30 2-8.3 分散劑(dispersant)...........................31 2-8.4 黏結劑(binder)...............................31 2-8.5 塑化劑(plasticizer)..........................32 2-8.6 漿料(slurry)與生胚(green tape)製作...........33 2-8.7 脫脂(debinder)與燒結(sintering)..............34 2-9 氮化鋁/玻璃粉低溫共燒陶瓷文獻回顧..............37 第三章 實驗藥品、儀器與方法........................40 3-1 藥品...........................................40 3-2 實驗設備與分析儀器.............................42 3-2.1 實驗設備.....................................42 3-2.2 分析儀器.....................................43 3-3 儀器原理與測量方式.............................45 3-3.1 粒徑分析.....................................45 3-3.2 比表面積分析.................................45 3-3.3 氮含量與氧含量分析...........................45 3-3.4 晶相結構分析.................................46 3-3.5 表面型態分析.................................46 3-3.6 理論密度之計算...............................46 3-3.7 試片密度測量.................................47 3-3.8 收縮率(shrinkage)計算........................47 3-3.9 熱傳導值分析.................................47 3-3.10 熱膨脹係數量測..............................48 3-3.11 介電特性量測(LCR Meter).....................48 3-3.12 機械強度量測................................49 3-4 實驗方法.......................................49 3-4.1 粉碎及研磨...................................49 3-4.2 氮化鋁與玻璃粉粉體分析.......................49 3-4.2.1 氮化鋁粉體分析.............................49 3-4.2.2 玻璃粉體分析...............................50 3-4.3 實驗流程.....................................52 3-4.3.1 氮化鋁高溫氧化實驗進行方式.................52 3-4.3.2 氮化鋁/玻璃粉LTCC製程實驗..................52 第四章 結果與討論..................................63 4-1 氮化鋁粉體高溫氧化行為實驗.....................63 4-1.1 晶相結構分析.................................63 4-1.2 氧含量分析...................................64 4-2 氮化鋁/玻璃粉LTCC製程..........................71 4-2.1 壓力與熱源對燒結體影響.......................71 4-2.2 不同氮化鋁粒徑與氮化鋁/玻璃粉比例對燒結體的影響..75 4-2.2.1 體密度與收縮率.................................75 4-2.2.2 表面形態分析...................................81 4-2.2.3 熱傳導值與熱膨脹係數...........................94 4-2.2.4 介電常數與介電損失.............................98 4-2.2.5 抗折強度......................................101 4-2.3 溫度與持溫時間對燒結體的影響....................102 第五章 結 論..........................................117 第六章 參考文獻.......................................120 自述............................................................................................................. 125

    1.G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, J. Phys. Chem. Solids, 48, 641 (1987)
    2.T. J. Mroz, Jr., Ceram. Bull., 71, 782 (1992)
    3.L. M. Sheppard, Ceram. Bull., 69, 1801 (1990)
    4.B. H. Mussler, Ceram. Bull., 79, 45 (2000)
    5.謝宗雍,第十章 “電子構裝技術”, 微電子材料與製程,中國材料科學學會 (2000)
    6.葉信賢,”基層陶瓷可靠度技術”,工業材料雜誌,192 期,pp.144-152,(2002)
    7.M. G. Rubioa, P. E. Vallejosb, L. S. Lagunac, and J. J. S. Avile, Sensors and Actuators, A89, 222 (2001)
    8.R. E. Mistler and E. R. Twiname, Tape Casting: Theory and Practice, American Ceramic Society, Westerville, OH (2000)
    9.A. A. Gallo, C. S. Bischof, K .E. Howard, and S. A. Anderson, Electronic components and Technology Conference, 335 (1996)
    10.J. K. Park, H. D. Shin, Y. S. Park, S. Y. Park, K. P. Hong, B. M. Kim, Proceedings - IEEE 56th Electronic Components and Technology Conference, 1070 (2006)
    11.Y. Kurokawa, K. Utsumi, and H. Takamizawa, J. Am. Ceram. Soc., 71, 588 (1988).
    12.汪建民,“陶瓷技術手冊”,中華民國科技發展進會,1994。
    13.鍾賢龍,謝承佑,” 高導熱氮化鋁陶瓷粉體在複合材料與電子基板應用之先導研究",成功大學碩士論文 (2006)
    14.F. J. M. Haussonne, Mater. Manuf. Processes, 10, 717 (1995)
    15.G. Selvaduray, and L. Sheet, Mater. Sci. Technol., 9, 463 (1993)
    16.J. Subrahmanyam, and M. Vijayakumar, J. Mater. Sci., 27, 6249 (1997)
    17.C. N. Lin and S. L. Chung, J. Mater. Res., 16, 2200 (2001)
    18.C. N. Lin and S. L. Chung, J. Mater. Res., 16, 3518 (2001)
    19.C. N. Lin, and S. L. Chung, J. Mater. Res. 19, 3037 (2004)
    20.謝承佑,"氮化鋁粉體水解性質探討與抗濕技術開發",成功大學碩士論文 (2002)
    21.鍾賢龍,謝承佑,”抗濕性氮化鋁粉體之製造方法",中美專利申請中
    22.A. D. Katnani, and K. I. Papathomas, J. Vac. Sci. Technol. A., 5, 1335 (1987)
    23.A. L. Brown, and M. G. Norton, J. Mater. Sci. Lett., 17, 1519 (1998).
    24.S. Ramanathan, R. Bhat, D. D. Upadhyaya, and S. K. Roy, Br. Ceram. Trans., 94, 74 (1995).
    25.D. J. Duchesne, K. W. Hipps, B. A. Grasher, and M. G. Norton, J. Mater. Sci. Lett., 18, 877 (1999).
    26.Z. Gu, J. H. Edgar, C. Wang, and D. W. Coffey, J. Am. Ceram. Soc., 89, 2167 (2006)
    27.A. Abid, R. Bensalem, and B. J. Sealy, J. Mater. Sci., 21, 1301 (1986)
    28.K. Watari, H. J. Hwang, M. Toriyama and S. Kanzaki, J. Am. Ceram. Soc., 79, 1979 (1996)
    29.Yamaguchi, Takashi; Kageyama, Makiko, IEEE Transactions on Components, Hybrids and Manufacturing Technology, 12, 402 (1989)
    30.黃昌偉,"陶瓷材料之熱性質分析",精密陶瓷特性及檢測分析,P.10.1-10.54.
    31.W. D. Callister, JR., “Materials Science and Engineering an Introduction” 4th, ed. (1999).
    32.W. J. Kim, D. K. Kim, and C. H. Kim, Journal of Material Synthesis and Processing, 3, 39 (1995).
    33.R. M. German, Liquid Phase Sintering, Plenum, New York (1985).
    34.陳皇鈞譯,"陶瓷材料概論",第十八章,曉園出版社 (1987)。
    35.王宏文,張光欽,”高分子-黏土奈米複合材料之合成及介電特性研究” ,中原大學碩士論文 (2004)
    36.R. R. Tummala, J. Am. Ceram. Soc., 74, 895 (1991)
    37.R. R. Tummala, E. J. Rymaszewski, and V. N. Reinhold, "Microelectronics Packaging Handbook"(1989)
    38.G. Besendorfer, A. Roosen, C. Modes, T. Betz, Int. J. Appl. Ceram. Technol. 4, 53 (2007)
    39.P. Nahass, W. E. Rhine, R. L. Pober, H. K. Bowen, W. L. Robbins, K.M. Nair, R. Pohanka, and R.C. Buchanan, Ceram. Trans., 15, 355 (1990)
    40.R. Moreno, Am. Ceram. Soc. Bull., 71, 1521 (1992)
    41.D.J. Shaw, Colloid stability, in Colloid and Surface Chemistry, 4th edn, Butterworth-Heinemann, Oxford, 210 (1992)
    42.K. Nagata, J. Ceram. Soc. Jpn., 101, 1271 (1992)
    43.N. Ushifusa and M. Cima, J. Am. Ceram. Sot., 74, 2443 (1991)
    44.K. Nagata, S. Hirano, G.L. Messing and H. Hausner, Ceram. Trans. 22, 335 (1991)
    45.K. Nagata, M. J. Cima, Ceram. Trans. 26, 205 (1992)
    46.R. E. Mistler and E. R. Twiname, "Tape casting theory and practice"
    47.G. O. Medowski, and R. D. Sutch, J. C. Williams, and F. F. Y. Wang, Mater. Sci. Technol. 9, 173 (1976)
    48.B. H. Ryu, M. Takahashi and S. Suzuki, J. Ceram. Soc. Jpn., 101, 643 (1993)
    49.K. Kita, J. Fukuda, H. Ohmura and T. Sakai, US Patent 4, 353 (1982).
    50.J. E. Schuetz, I. A. Khoury and R. A. DiChiara, Ceram. Ind., 66, 42 (1987)
    51.P. Nahass, R.L. Pober, W.E. Rhine, W.L. Robbins and H.K. Bowen, J. Am. Ceram. Soc., 75, 2373 (1992)
    52.J. S. Reed, "Principles of ceramic processing", 2nd edition., 277 (1995).
    53.Y. Xu, D. D. L. Chung, C. Mroz, Composites : Part A, 32, 1749 (2001)
    54.T. B. Troczynski, P. S. Nicholson, J. Am. Ceram. Soc., 72, 1488 (1989)
    55.Q. X. Zhang, W. L. Li, H. R. Zhuang, Chinese J. Mater. Res., 17, 79 (2003)
    56.Q. X. Zhang, X. J. Luo, W. L. Li, H. R. Zhuang, D. Yan, J. Mater. Sci. 38, 1781 (2003)
    57.X. J. Luo, B. L. Zhang, W. L. Li, H. R. Zhuang, J. Mater. Sci. 39, 4387 (2004)
    58.X. J. Luo, B. L. Zhang, W. L. Li, and H. R. Zhuang, J. Am. Ceram. Soc., 88, 497 (2005)
    59.J. T. Oh, P. Hing, and H.S. Fong, J. Mater. Proc. Technol., 89-90 (1999) 497-500
    60.G. H. Chen, X. Y. Liu, J. Mater. Proc. Technol., 190, 77 (2007)
    61.S. Fukumoto, T. Hookabe, and H. Tsubakino, J. Mater. Sci., 35, 2743 (2000)
    62.Y. Zhang and J. G. P. Binner, Int. J. Inorg. Mater., 1, 219 (1999)
    63.D. Hotza, O. Sahling, and P. Greil, J. Mater. Sci., 30, 127 (1995)
    64.J. J. Wang, X. S. Yi, Composites Science and Technology 64, 1623 (2004)
    65.邱標麟“玻璃製造學”修訂六版,台南市復文出版 (2002)

    下載圖示 校內:2009-07-27公開
    校外:2009-07-27公開
    QR CODE