| 研究生: |
李侑霖 Li, You-Lin |
|---|---|
| 論文名稱: |
混合基因演算及資料探勘法求解彈性零工式生產排程 Hybriding genetic algorithm and data mining methods for flexible job shop scheduling |
| 指導教授: |
利德江
Li, Der-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 彈性零工式排程 、基因演算法 、資料探勘 、決策樹 、k-means分群法 |
| 外文關鍵詞: | flexible job shop, genetic algorithm, data mining, decision tree, k-means |
| 相關次數: | 點閱:113 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
彩色濾光片的高度客製化產品特性以及TFT-LCD產業的「零庫存」管理潮流下,每日依客戶需求進行生產排程的變更已成為常態。若再考量新產品的導入,生產排程變更的次數勢必更加頻繁。如何在複雜的彈性零工式排程中,快速求得有效解,成為專業彩色濾光片廠的一大挑戰。本論文提出「混合基因演算及資料探勘法」來達到快速求解彈性零工式排程的目的。本方法的基本策略,主要是將彈性零工式排程問題分成三個步驟來處理,首先,利用「基因演算法」來求解工廠現有實際的訂單需求案例,接著利用「分群法」進行訂單需求案例分群,最後以「決策樹」法找出訂單需求案例中各產品數量配比與排程間的關係,並定義其對應規則。透過本研究方法所建構之排程知識可讓排程者不須再透過任何演算工具,只須透過對應規則表即可快速獲得不錯的排程解。實驗結果上也證實混合基因演算及資料探勘法在類別70群因子下,其求解結果與基因演算法相近。
CF is a high custom-made product. It’s a routine work to change scheduling plan frequently to fit every customer’s delivery time especially in a tendency towards JIT management in the TFT-LCD manufacturing. It becomes a challenge to plan an efficient scheduling rapidly in flexible job shop. To solve this difficult problem, this study proposed one method that is called “Hybriding genetic algorithm and data mining methods”. This method contains there main steps. First, we create many order cases and deal with them by genetic algorithm method. Second, we use k-means method to classify all the order cases and further, find out the best solution of every cluster. Lastly we look for relations between cases and solutions and transform the relations into a rule chart. A rule chart will help us to find a solution rapidly to every new case.
張文豪(民91)。李克特式量表、分群方法與分群群數關係之研究。國立成功大學工業管理研究所碩士論文,未出版,台南市。
蔡杭助(民91)。結合基因演算法與離散事件模擬求解即時性平行機台之派工規劃問題。國立成功大學製造工程研究所碩士論文,未出版,台南市。
Baker, K. R. (Ed.). (1974). Introduction to Sequencing and Scheduling, New York: Wiley.
Baykasoglu, A. (2002). Linguistic based meta-heuristic optimization model for flexible job shop scheduling. International Journal of Production Research, 40(17), 4523-4543.
Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search, Annals of Operations Research, 41(3), 157-183.
Chao, X., & Pinedo, M. (Eds.). (1998). Operation Scheduling with Applications in Manufacturing and services, U.S.A: McGraw-Hill.
Cheng, T. C. E., & Diamond, J. E. (1995). Scheduling Two Job Classes on Parallel Machines, IIE Transactions, 27, 689-693.
Dauzere-Peres, S., & Paulli, J. (1997). An integrated approach for modeling and solving the general multiprocessor job shop scheduling problem using tabu search , Annals of Operations Research, 70, 281–306.
Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flow shop and job-shop scheduling, Mathematics of Operations Research, 1(2), 117–129.
Glover, F. (1977). Heuristics for integer programming using surrogate constraints, Decision Sciences, 8(1), 156–166.
Hertz, A., & Widmer, M. (1996). An improve tabu search approach for solving the job shop scheduling problem with tooling constraints, Discrete Applied Mathematics, 65, 391–345.
Holland, J. H. (1975). Adaptation in Natural and Artificial Systems, U.S.A: The University of Michigan Press.
Huang, J. Z., Ng, M. K., Rong, H., & Li, Z. (2005). Automated Variable Weighting in k-Mean Type Clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5), 657-668.
Kantardzic, M. (2003). Data Mining : Concepts, Models, Methods, and Algorithms. Wiley Inter-Science.
Kim, G. H., & Lee C. S. G. (1994). An evolutionary approach to the job-shop scheduling problem, Proceedings IEEE International Conference on Robotics and Automation, 8(13), 501-506.
Kirkpatrick, S., Gelatt, C. D. Jr., & Vecchi, M. P. (1983). Optimization by Simulated Annealing, Science, 220(4598), 671–680.
Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., & Shmoys, D. B. (1993). Sequencing and Scheduling: Algorithms and Complexity, Handbook in Operations Research and Management Science, Amsterdam : Logistics of Production and Inventory.
Mesghouni, K., Hammadi, S. & Borne, P. (1998). On modeling genetic algorithms for flexible job-shop scheduling problems, Studies in Informatics and Control Journal, 7, 37-47.
Nakano, R. and Yamada, T. (1991), Conventional Genetic Algorithm for Job-Shop Problems, Proceedings of the 4th International Conference on Genetic Algorithms and their Applications, San Diego, U.S.A: 474-479.
Pezzella, F., Morgantiand, G., & Ciaschetti., G. (2008). A genetic algorithm for the Flexible Job-shop Scheduling Problem, Computers & Operations Research, 35(10), 3202-3212.
Saidi-Mehrabad, M., & Fattahi, P. (2007). Flexible job shop scheduling with tabu search algorithms, The International Journal of Advanced Manufacturing Technology, 32,0268-3768.
Sridhar, J., & Rajendran, C. (1993). Scheduling in A Cellular Manufacturing System: A Simulated Annealing Approach, International Journal of Production Research, 31(12), 2927-2945.
Tou, J.T., & Gonzalez, R.C. (1974). Pattern Recognition Principles, MA: Addison-Wesley.
Weijum, X., & Zhiming, W. (2005). An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems, Computers & Industrial Engineering, 48(2), 409-425.