簡易檢索 / 詳目顯示

研究生: 陳妍綺
Chen, Yen-Chi
論文名稱: 多目標修正螢火蟲演算法於路徑產生機構之最佳化尺寸合成
Multi-Objective Modified Firefly Algorithm for Optimum Synthesis of Path Generating Mechanism
指導教授: 劉至行
Liu, Chih-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 126
中文關鍵詞: 多目標修正螢火蟲演算法ε-支配法機構尺寸最佳話尺寸合成
外文關鍵詞: Multi-objective algorithm, Multi-objective Modified Firefly Algorithm, Reconfigurable mechanism synthesis
相關次數: 點閱:125下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究參考螢火蟲演算法(Multi-Objective Modified Firefly Algorithm),結合ℇ-支配法,提出一個多目標修正螢火蟲演算法,並將多目標修正螢火蟲演算法應用在路徑產生機構的最佳化尺寸合成。本研究首先以七個最佳化測試函數為範例,並與其他多目標演算法進行比較,藉由檢視多目標修正螢火蟲演算法的收斂與分散能力,證明多目標修正螢火蟲演算法優於其他多目標演算法。其中用以比較的多目標演算法包含 : 多目標粒子群演算法(Multiple Objective Particle Swarm Optimizer)、多目標蟻獅演算法(Multi-Objective Ant Lion Optimization)、分解式多目標進化演算法(Multi-Objective Evolutionary Algorithm Based on Decomposition) 以及非支配排序基因演算法III (Nondominated Sorting Genetic Algorithm III)。再以兩個機構尺寸最佳化問題做測試,分別為八連桿以及六連桿問題,說明本演算法於路徑產生機構的最佳化尺寸合成問題的可行性。在八連桿的問題中,本研究以現有的機構軌跡作為目標軌跡,因此已知最佳解,藉此驗證演算法的正確性。於六連桿的問題當中,本研究以三個不同的人為設計軌跡作為目標軌跡,並最佳化出最接近的六連桿機構。經過結果比較,本研究提出之多目標修正螢火蟲演算法結果優於其他演算法。

    A new multi-objective algorithm, Multi-Objective Modified Firefly Algorithm (MOMFA), is proposed in the study. The new algorithm combines the convergence operator by using Modified Firefly Algorithm with the distributing method modifying ℇ-dominance method. To demonstrate the converging and distributing ability, seven testing problems are performed. By comparing the new algorithm with four other multi-objective algorithms that include Multiple Objective Particle Swarm Optimizer, Multi-Objective Ant Lion Optimization, Multi-Objective Evolutionary Algorithm Based on Decomposition and Nondominated Sorting Genetic Algorithm III, several features for algorithms could be distinguished and summarized. In the mechanism synthesis problems, three gaits that are generated from one existing eight-bar reconfigurable mechanism set to demonstrate the effectiveness of the proposed MOMFA. Further, the study uses three manually designed gaits on six-bar mechanism synthesis problem to identify the searching ability for the proposed algorithm with unknown mechanism’s dimension. The results show that MOMFA is able to produce better solutions regarding convergence and distribution compared to other algorithms.

    ABSTRACT i 摘要 ii ACKNOWLEDGMENTS iii Contents iv List of Tables vii List of Figures ix Chapter 1 Introduction 1 1.1 Literature Review 1 1.1.1 Single-Objective Algorithm 2 1.1.2 Multi-Objective Algorithm 3 1.1.3 Mechanism Synthesis with Algorithm 3 1.1.4 Distributing Method 4 1.2 Research Motivation 7 1.3 Thesis Structure 8 Chapter 2 Multi-Objective Optimization Algorithms 9 2.1 Multi-Objective Optimization Structure 9 2.1.1 Objective and Solution Space 10 2.1.2 Dominance 10 2.1.3 Pareto Optimality 11 2.2 Multi-Objective Particle Swarm Optimization (MOPSO) 12 2.2.1 Particle Swarm Optimization (PSO) 12 2.2.2 MOPSO Flowchart 13 2.3 Nondominated Sorting Genetic Algorithm III (NSGA III) 16 2.3.1 Fast Nondominated Sorting 16 2.3.2 Reference-Point-Based Method 18 2.3.3 NSGA III Structure 19 2.4 Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D) 21 2.4.1 Decomposition Method - Tchebycheff Approach 21 2.4.2 MOEA/D Structure 22 2.5 Multi-Objective Ant Lion Optimization (MOALO) 25 2.5.1 Ant Lion Optimization (ALO) 25 2.5.2 MOALO Structure 26 2.6 Performance Metric 28 Chapter 3 Multi-Objective Modified Firefly Algorithm (MOMFA) 29 3.1 Modified Firefly Algorithm (MFA) 29 3.1.1 Biological Inspiration[10] 30 3.1.2 MFA Mathematical Framework 30 3.1.3 MFA Flowchart 32 3.2 ℇ-dominance Method in MOMFA 34 3.2.1 Original Epsilon Method 34 3.2.2 Modified Epsilon Method 38 3.2.3 Box Estimation 44 3.3 Multi-Objective Modified Firefly Algorithm Introduction 46 3.3.1 Repository Sorting and Zonal Convergence 46 3.3.2 MOMFA Flowchart 47 Chapter 4 Standard Test Problems 49 4.1 Comparing Algorithms 50 4.2 Zitzler-Deb-Thiele Test Problems Set (ZDT) 51 4.2.1 ZDT1 Results 52 4.2.2 ZDT3 Results 55 4.2.3 ZDT6 Results 58 4.3 Deb-Thiele-Laumanns-Zitzler Test Problems (DTLZ) 63 4.3.1 DTLZ1 Results 64 4.3.2 DTLZ2 Results 68 4.3.3 DTLZ5 Results 72 4.3.4 DTLZ6 Results 78 Chapter 5 Reconfigurable Mechanism Synthesis 81 5.1 Algorithm Setting 81 5.2 Eight-bar Mechanism Synthesis 84 5.2.1 Position Analysis 84 5.2.2 Objective and Constraints 89 5.2.3 Results 92 5.3 Six-bar mechanism synthesis 102 5.3.1 Position Analysis 102 5.3.2 Objectives and Constraints 107 5.3.3 Five Reconfigurable Links Results 109 5.3.4 One Reconfigurable Link Results 115 Chapter 6 Conclusion and Suggestion 120 6.1 Conclusion 120 6.2 Suggestion 121 References 122

    [1] 蔣君宏, 平面機構之運動學與設計. 高立圖書有限公司, 2002.
    [2] X.-S. Yang, Nature-inspired metaheuristic algorithms. Luniver press, 2010.
    [3] J. H. Holland, "Genetic algorithms," Scientific american, vol. 267, no. 1, pp. 66-73, 1992.
    [4] R. Storn and K. Price, "Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces," Journal of global optimization, vol. 11, no. 4, pp. 341-359, 1997.
    [5] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: a practical approach to global optimization. Springer Science & Business Media, 2006.
    [6] R. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," in MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995: Ieee, pp. 39-43.
    [7] M. Dorigo and L. M. Gambardella, "Ant colony system: a cooperative learning approach to the traveling salesman problem," IEEE Transactions on evolutionary computation, vol. 1, no. 1, pp. 53-66, 1997.
    [8] M. Dorigo and M. Birattari, Ant colony optimization. Springer, 2010.
    [9] Z. W. Geem, J. H. Kim, and G. V. Loganathan, "A new heuristic optimization algorithm: harmony search," simulation, vol. 76, no. 2, pp. 60-68, 2001.
    [10] X.-S. Yang, "Firefly algorithm, stochastic test functions and design optimisation," arXiv preprint arXiv:1003.1409, 2010.
    [11] X.-S. Yang, "A new metaheuristic bat-inspired algorithm," in Nature inspired cooperative strategies for optimization (NICSO 2010): Springer, 2010, pp. 65-74.
    [12] X.-S. Yang and S. Deb, "Cuckoo search via Lévy flights," in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), 2009: IEEE, pp. 210-214.
    [13] K. Miettinen, Nonlinear multiobjective optimization. Springer Science & Business Media, 2012.
    [14] J. D. Schaffer, "Multiple objective optimization with vector evaluated genetic algorithms," in Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 1985, 1985: Lawrence Erlbaum Associates. Inc., Publishers.
    [15] D. E. Goldberg and J. Richardson, "Genetic algorithms with sharing for multimodal function optimization," in Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, 1987: Hillsdale, NJ: Lawrence Erlbaum, pp. 41-49.
    [16] C. M. Fonseca and P. J. Fleming, "Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization," in Icga, 1993, vol. 93, no. July: Citeseer, pp. 416-423.
    [17] K. Deb, "Multi-objective genetic algorithms: Problem difficulties and construction of test problems," Evolutionary computation, vol. 7, no. 3, pp. 205-230, 1999.
    [18] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182-197, 2002.
    [19] K. Deb and H. Jain, "An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints," IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 577-601, 2014.
    [20] M. Erickson, A. Mayer, and J. Horn, "Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA)," Advances in Water Resources, vol. 25, no. 1, pp. 51-65, 2002.
    [21] C. C. Coello and M. S. Lechuga, "MOPSO: A proposal for multiple objective particle swarm optimization," in Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600), 2002, vol. 2: IEEE, pp. 1051-1056.
    [22] R. Akbari, R. Hedayatzadeh, K. Ziarati, and B. Hassanizadeh, "A multi-objective artificial bee colony algorithm," Swarm and Evolutionary Computation, vol. 2, pp. 39-52, 2012.
    [23] X.-S. Yang, "Bat algorithm for multi-objective optimisation," arXiv preprint arXiv:1203.6571, 2012.
    [24] S. Mirjalili, S. Saremi, S. M. Mirjalili, and L. d. S. Coelho, "Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization," Expert Systems with Applications, vol. 47, pp. 106-119, 2016.
    [25] S. Mirjalili, P. Jangir, and S. Saremi, "Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems," Applied Intelligence, vol. 46, no. 1, pp. 79-95, 2017.
    [26] K. Deb and S. Tiwari, "Multi-objective optimization of a leg mechanism using genetic algorithms," Engineering Optimization, vol. 37, no. 4, pp. 325-350, 2005.
    [27] Z. Affi, E. Badreddine, and L. Romdhane, "Advanced mechatronic design using a multi-objective genetic algorithm optimization of a motor-driven four-bar system," Mechatronics, vol. 17, no. 9, pp. 489-500, 2007.
    [28] M. Khorshidi, M. Soheilypour, M. Peyro, A. Atai, and M. S. Panahi, "Optimal design of four-bar mechanisms using a hybrid multi-objective GA with adaptive local search," Mechanism and Machine Theory, vol. 46, no. 10, pp. 1453-1465, 2011.
    [29] S. Nansai, N. Rojas, M. R. Elara, and R. Sosa, "Exploration of adaptive gait patterns with a reconfigurable linkage mechanism," in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013: IEEE, pp. 4661-4668.
    [30] J. Kulandaidaasan Sheba, M. Elara, E. Martínez-García, and L. Tan-Phuc, "Trajectory Generation and Stability Analysis for Reconfigurable Klann Mechanism Based Walking Robot," Robotics, vol. 5, no. 3, p. 13, 2016.
    [31] J. K. Sheba, M. R. Elara, E. Martínez-García, and L. Tan-Phuc, "Synthesizing reconfigurable foot traces using a Klann mechanism," Robotica, vol. 35, no. 1, pp. 189-205, 2017.
    [32] J. K. Sheba, E. Martínez-García, M. R. Elara, and L. Tan-Phuc, "Synchronization and stability analysis of quadruped based on reconfigurable Klann mechanism," in 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), 2014: IEEE, pp. 663-668.
    [33] I. Y. Kim and O. L. de Weck, "Adaptive weighted-sum method for bi-objective optimization: Pareto front generation," Structural and multidisciplinary optimization, vol. 29, no. 2, pp. 149-158, 2005.
    [34] M. J. Rentmeesters, W. K. Tsai, and K.-J. Lin, "A theory of lexicographic multi-criteria optimization," in Proceedings of ICECCS'96: 2nd IEEE International Conference on Engineering of Complex Computer Systems (held jointly with 6th CSESAW and 4th IEEE RTAW), 1996: IEEE, pp. 76-79.
    [35] A. Messac and C. A. Mattson, "Generating well-distributed sets of Pareto points for engineering design using physical programming," Optimization and Engineering, vol. 3, no. 4, pp. 431-450, 2002.
    [36] Q. Zhang and H. Li, "MOEA/D: A multiobjective evolutionary algorithm based on decomposition," IEEE Transactions on evolutionary computation, vol. 11, no. 6, pp. 712-731, 2007.
    [37] I. Das and J. E. Dennis, "Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems," SIAM Journal on Optimization, vol. 8, no. 3, pp. 631-657, 1998.
    [38] A. Messac, A. Ismail-Yahaya, and C. A. Mattson, "The normalized normal constraint method for generating the Pareto frontier," Structural and multidisciplinary optimization, vol. 25, no. 2, pp. 86-98, 2003.
    [39] M. Ming, R. Wang, Y. Zha, and T. Zhang, "Pareto adaptive penalty-based boundary intersection method for multi-objective optimization," Information Sciences, vol. 414, pp. 158-174, 2017.
    [40] B. L. Miller and M. J. Shaw, "Genetic algorithms with dynamic niche sharing for multimodal function optimization," in Proceedings of IEEE international conference on evolutionary computation, 1996: IEEE, pp. 786-791.
    [41] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, "Combining convergence and diversity in evolutionary multiobjective optimization," Evolutionary computation, vol. 10, no. 3, pp. 263-282, 2002.
    [42] N. Srinivas and K. Deb, "Muiltiobjective optimization using nondominated sorting in genetic algorithms," Evolutionary computation, vol. 2, no. 3, pp. 221-248, 1994.
    [43] C. A. C. Coello, "A comprehensive survey of evolutionary-based multiobjective optimization techniques," Knowledge and Information systems, vol. 1, no. 3, pp. 269-308, 1999.
    [44] V. Pareto, Cours d'économie politique. Librairie Droz, 1964.
    [45] P. Ngatchou, A. Zarei, and A. El-Sharkawi, "Pareto multi objective optimization," in Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems, 2005: IEEE, pp. 84-91.
    [46] J. Kennedy, "Particle swarm optimization," Encyclopedia of machine learning, pp. 760-766, 2010.
    [47] K. Deb and D. E. Goldberg, "An Invetigation of Niche and Species Formation in Genetic Algorithms," in Proceedings of the Third International 152 Conference on Genetic Algorithms, 1989.
    [48] A. Lipowski and D. Lipowska, "Roulette-wheel selection via stochastic acceptance," Physica A: Statistical Mechanics and its Applications, vol. 391, no. 6, pp. 2193-2196, 2012.
    [49] K. Sindhya, K. Miettinen, and K. Deb, "A hybrid framework for evolutionary multi-objective optimization," IEEE Transactions on Evolutionary Computation, vol. 17, no. 4, pp. 495-511, 2012.
    [50] S. Mirjalili, "The ant lion optimizer," Advances in Engineering Software, vol. 83, pp. 80-98, 2015.
    [51] D. A. Van Veldhuizen, "Multiobjective evolutionary algorithms: classifications, analyses, and new innovations," AIR FORCE INST OF TECH WRIGHT-PATTERSONAFB OH SCHOOL OF ENGINEERING, 1999.
    [52] P. A. Bosman and D. Thierens, "The balance between proximity and diversity in multiobjective evolutionary algorithms," IEEE transactions on evolutionary computation, vol. 7, no. 2, pp. 174-188, 2003.
    [53] I. F. Sbalzarini, S. Müller, and P. Koumoutsakos, "Multiobjective optimization using evolutionary algorithms," in Proceedings of the summer Program, 2000, vol. 2000, pp. 63-74.
    [54] E. Zitzler and L. Thiele, "Multiobjective optimization using evolutionary algorithms—a comparative case study," in International conference on parallel problem solving from nature, 1998: Springer, pp. 292-301.
    [55] 王秋閔, "修正螢火蟲演算法於路徑產生機構之最佳化尺寸合成," 成功大學機械工程學系學位論文, pp. 1-129, 2018.
    [56] M. Laumanns, L. Thiele, and E. Zitzler, "An adaptive scheme to generate the pareto front based on the epsilon-constraint method," in Dagstuhl Seminar Proceedings, 2005: Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
    [57] E. Zitzler, K. Deb, and L. Thiele, "Comparison of multiobjective evolutionary algorithms: Empirical results," Evolutionary computation, vol. 8, no. 2, pp. 173-195, 2000.
    [58] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, "Scalable test problems for evolutionary multiobjective optimization," in Evolutionary multiobjective optimization: Springer, 2005, pp. 105-145.
    [59] S. Huband, P. Hingston, L. Barone, and L. While, "A review of multiobjective test problems and a scalable test problem toolkit," IEEE Transactions on Evolutionary Computation, vol. 10, no. 5, pp. 477-506, 2006.
    [60] S. Huband, L. Barone, L. While, and P. Hingston, "A scalable multi-objective test problem toolkit," in International Conference on Evolutionary Multi-Criterion Optimization, 2005: Springer, pp. 280-295.
    [61] R. Cheng, Y. Jin, and M. Olhofer, "Test problems for large-scale multiobjective and many-objective optimization," IEEE transactions on cybernetics, vol. 47, no. 12, pp. 4108-4121, 2016.
    [62] Y. Team. The Yarpiz Project [Online]. Available: http://yarpiz.com/category/multiobjective-optimization.
    [63] ETH. Density and approximations of µ-distribution for different testproblems [Online]. Available: https://sop.tik.ee.ethz.ch/download/supplementary/testproblems/.
    [64] X.-S. Yang, T. Ting, and M. Karamanoglu, "Random walks, Lévy flights, Markov chains and metaheuristic optimization," in Future information communication technology and applications: Springer, 2013, pp. 1055-1064.
    [65] Cinvestav. PFtrue for MOP Numeric Unconstrained Test Functions [Online]. Available: https://www.cs.cinvestav.mx/~emoobook/apendix-e/apendix-e.html.
    [66] J. C. Klann, "Walking device," ed: Google Patents, 2002.
    [67] J. C. Klann, "Walking device," ed: Google Patents, 2001.
    [68] 黃盈嘉, "創新八連桿足型爬梯機構設計與軌跡最佳化之研究," 成功大學機械工程學系學位論文, pp. 1-143, 2017.

    下載圖示 校內:2024-08-25公開
    校外:2024-08-25公開
    QR CODE