| 研究生: |
王紘尉 Wang, Hung-Wei |
|---|---|
| 論文名稱: |
建築物維生管線抗液化變位性能之試驗研究 Experimental Study on the Performance of Building Lifelines against Liquefaction-Induced Deformation |
| 指導教授: |
柯永彥
Ko, Yung-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 164 |
| 中文關鍵詞: | 土壤液化 、強制變位試驗 、地下維生管線 、管-土互制 、抗變位性能 |
| 外文關鍵詞: | soil liquefaction, forced displacement test, buried lifelines, soil-pipeline interaction, deformation resistance performance |
| 相關次數: | 點閱:277 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了解建築物因土壤液化產生沉陷時對其所連接地下維生管線之不利影響,本研究針對建築物之自來水、天然氣及汙水用戶管進行實尺寸物理模型強制位移試驗。試驗中,利用定速率加載系統將管線試體一端強制下壓,以模擬建築物沉陷之作用,並根據2016年美濃地震引致建築物沉陷量之中值 40 cm設定最大衝程;另一端則依實務上與維生分支幹管連接方式予以固定,並設定四種管周土壤狀態,分別為空箱、相對密度(Dr)10%、20%及40%,以模擬完全液化及不同程度之弱化情境;如此一來,可實際觀察強制位移及土壤受擠壓之衍生作用所引致管線之變形形態、受力分佈與破壞機制,並據以探討建築物維生管線之抗液化變位性能。結果顯示,空箱狀態下,管變形呈現雙曲率,兩端受撓明顯,造成彎矩集中於兩端;填土狀態下,各管應變值會隨相對密度提升而越大,自來水耐衝擊硬質聚氯乙烯管(HI-PVCP)及天然氣聚乙烯(PE)管二者應變分佈行為類似,彎矩集中於近加載端處;自來水波紋不鏽鋼管(SSP)則因具波紋段,使鞍座端幾乎不受力,彎矩集中於中段;汙水聚氯乙烯(PVC)管因斷面剛度較大,應變分佈行為於Dr= 10%及20%下與空箱之情況類似,Dr = 40%時才有反曲點向加載端移動之現象。此外,空箱狀態下,管線均無達材料降伏強度之破壞發生,反而是接頭先行損壞造成洩壓。在管周有土壤之情況下,於試驗結束後開挖發現,管徑較小之自來水管與天然氣管試體鄰近加載端套管之管段均因局部挫屈而彎折,並進而影響其受力狀態。整體而言,自來水SSP之可撓性波紋段有助於降低管身應變,使其抗撓性能大致優於HI-PVCP;天然氣PE管因管材可撓性佳且電熔焊接頭之接合強度高,性能表現為最佳;汙水PVC管試雖然管身強度與斷面剛度高,但膠合接頭常先行損壞。以上成果將可作為工程實務上進行地下管線抗液化設計之參考依據。
To investigate the impact of the deformation induced by soil liquefaction on buried building lifelines, forced displacement tests on prototype physical models of service pipelines (those connected to buildings) of potable water, natural gas and sewage were conducted. A constant-velocity loading system was used to force one end of the pipeline to displace downwards to account for building settlement, whereas the other end was fixed by the joint between a service pipeline and a distribution main. Various conditions of soil around the pipelines, including an empty box (no soil) and several different relative densities were specified to represent complete liquefaction and different levels of soil degradation, respectively. Thus, the deformation, strain, and failure mechanism of pipelines caused by both the forced displacement and derivative effects from deformed soil can be realistically observed, and discussions on the resistance performance of building lifelines against liquefaction-induced deformation can be accordingly made. Test results showed that stainless steel pipe (SSP) for potable water with flexible corrugated segments was verified to have generally better bending resistance performance compared with the conventional high impact polyvinyl chloride pipe (HI-PVCP); the polyethylene (PE) pipeline for gas showed best performance for its outstanding flexibility and high strength of its welded joint; the polyvinyl chloride (PVC) pipeline for sewage, despite its high strength and section rigidity, usually suffered damage of its glued joint. These findings can serve as the reference for anti-liquefaction design for buried pipelines in engineering practice.
1. 內政部營建署,「污水下水道用戶接管實務手冊」,2014。
2. 中華民國公用瓦斯事業協會,「公用天然氣事業輸配氣設備施工規範」,2014。
3. 林哲生,「由風險管理看供水系統備援規劃與緊急調度實務」,自來水會刊,第38卷,第3期,第1-8頁,2019。
4. 葉芳耀、吳俊霖、陳昱志,「專題報導:0206高雄美濃地震事件勘災紀要」,國家地震工程研究中心簡訊,第97期,第1-25頁,2016。
5. 詹焜耀,許敏能,黃裕泰,「波紋不銹鋼管於自來水給水管之應用」,自來水會刊,第29卷,第3期,第41-50頁,2010。
6. 臺北自來水事業處,「自來水用水設備審圖、檢驗、設計作業手冊」,2020。
7. 臺北自來水事業處,「漏水現況與防治成果」,2022。
8. 臺灣自來水股份有限公司,「自來水管埋設工程施工說明書」,2020。
9. 鄭崑硯,「土壤液化對地下維生管線影響之振動台試驗研究—建築物近端管線」,國立成功大學土木工程研究所,碩士論文,2022。
10. 蔡祁欽、王國隆、許尚逸、楊炫智、張為光、陳家漢、黃郁惟,「美濃地震台南地區土壤液化與地工災害之踏勘調查」,地工技術,第148期,第17-30頁,2016。
11. 盧志杰、黃俊鴻、柯永彥、倪勝火,「2018日本北海道地震勘災摘要報告」,地工技術,第162期,第73-84頁,2019。
12. 福岡正巳,宇都一馬,「ボーリング孔を利用した基礎地盤の横方向k値測定について」,土と基礎,特集号-I, pp. 3-8. ,1959.
13. Ashford, S.A., Juirnarongrit, T., “Response of single piles and pipelines in liquefaction-induced lateral spreads using controlled blasting”, Earthquake Engineering and Engineering Vibration, 1(2), pp.181-193. ,2002.
14. Casagrande, A. ,“Characteristics of cohesionless soils affecting the stability of slopes and earth fills”, Journal of the Boston Society of Civil Engineers, reprinted in Contributions to Soil Mechanics, Boston Society of Civil Engineers, 1940, pp.257-276. ,1936.
15. Demirci, H.E., Bhattacharya, S., Karamitros, D., Alexander, N., “Experimental and numerical modelling of buried pipelines crossing reverse faults”, Soil Dynamics and Earthquake Engineering, 114, pp.198-214. ,2018.
16. Hazen, A., “Hydraulic Fill Dams”, Transactions of the American Society of Civil Engineers. 83: pp.1717-1745. ,1920.
17. Ha, D., Abdoun, T., O’Rourke, M.J., Symans, M.D., O’Rourke, T.D., Palmer, M.C., Stewart, H.E., “Earthquake faulting effects on buried pipelines- case history and centrifuge study”, Journal of Earthquake Engineering, 14(5), pp.646-669. ,2010.
18. Hwang, J.H., Lu, C.C., Yang, H.C., Tsai, C.C., “Soil Liquefaction Issues in Meinong Earthquake” , 5th IASPEI / IAEE International Symposium on Effects of Surface Geology on Seismic Motion, Taipei, Taiwan, 2016.
19. Ishihara, K.,“Stability of natural deposits during earthquakes”, International conference on soil mechanics and foundation engineering Vol. 11, pp.321-376. ,1985.
20. Jalali, H.H., Rofooei, F.R., Attari, N.K.A., Samadian, M., “Experimental and finite element study of the reverse faulting effects on buried continuous steel gas pipelines”, Soil Dynamics and Earthquake Engineering 86, pp.1-14. ,2016.
21. Kim, J., Nadukuru, S.S., Pour-Ghaz, M., Lynch, J.P., Michalowski, R.L., Bradshaw, A.S., Green, R.A., Weiss, W.J., “Assessment of the behavior of buried concrete pipelines subjected to ground rupture: experimental study”, Journal of Pipeline Systems Engineering and Practice, 3(1), pp.8-16. ,2012.
22. Meyerhof, G.G., “Discussion on Research on determining the density of sands by penetration testing”, Proc. 4th Int. Conf on Soil Mech. and Found. Engrg., Vol. 1: 110. ,1957.
23. O’Rourke, M.J. and Liu, X., “Response of Buried Pipelines Subjected to Earthquake Effect”, MCEER Report. ,1999.
24. Omuro, H., Himono, T., “Polyethylene pipeline performance against earthquake”, 19th Plastic Pipes Conference, Las Vegas, NV. ,2018.
25. Rubeiz, C.G., “Performance of pipes during earthquakes”, 15th Plastic Pipes Conference, Vancouver, Canada. ,2010.
26. Terzaghi, K., “Erdbaumechanik auf bodenphysikalischer grundlage”, Leipzig:Franz Deuticke. ,1925.
27. Yasuda, S., Towhata, I., Ishii, I., Sato, S., “Liquefaction-induced damage to structures during the 2011 Great East Japan Earthquake”, Journal of JSCE, 1(1), pp.181-193. ,2013.