| 研究生: |
蕭嘉瑢 Hsiao, Chia-Jung |
|---|---|
| 論文名稱: |
複合基質厭氧氫發酵生物程序操控之功能評估及分生檢測生態之研究 Performance Evaluation and Microbial Ecology for Biohydrogen Fermentation Process Treating Multiple Substrates |
| 指導教授: |
鄭幸雄
Cheng, Sheng-Shung 曾怡禎 Tseng, I-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 分子生物 、動力模式 、生物產氫 、複合基質 |
| 外文關鍵詞: | biohydrogen, CSTR, kinetic model, molecular biotechnology, Clostridium, multiple substrates |
| 相關次數: | 點閱:79 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫能源為未來替代能源的重要一環,利用微生物進行廢水或廢棄物中有機物的氫發酵,為生物處理回收能源的新趨勢,廢水一般含複雜成分(如碳水化合物及蛋白質),且各具不同氫發酵特性,本研究探討厭氧氫發酵生物反應器於不同水力停留時間(HRT)下,表現的氫氣生成情形、微生物生長及複合基質所扮演角色,並以模式進行動力探討,及以分子生物學角度切入微生物生態的變遷,期望作為未來整體程序設計上參考依據。
本研究植種污泥來自食品廠處理廢水UASB污泥,經熱處理並批次馴養,植入連續流攪拌反應器(Continuous-Flow Stirred Tank Reactor, CSTR),以20,000 mg/L葡萄糖及水解蛋白質(3:2(w/w))作為基質,溫度控制於35℃,進行七試程水力停留時間分別為18、12、8、6、4、2及1.45小時。水力停留時間長於1.45小時的試程,產氫表現及微生物生長皆可維持一穩定狀態。當水力停留時間為2小時,程序表現出最佳氫氣生成速率1,247 mmol H2/L/day,比產氫速率9.5 L H2/g VSS/day及氫氣產率(hydrogen yield)5.0 mmol H2/g-CODapplied。
在不同水力停留時間下,葡萄糖主要利用於產氫且可降解完全,蛋白質所扮演的角色則不盡相同,在較長的水力停留時間下,蛋白質可被利用於發酵及進行生物體合成,隨著水力停留時間縮短,其作用主要轉為生物質體合成用,或仍以有機氮的型式存在,只有較少部分被代謝至氨氮型式。產物主要以丁酸、乙酸甲酸及氨氮為主,隨著水力停留時間與負荷的改變,微生物代謝途徑有移轉的現象。利用雙基質定恆狀態模式(dual-substrate steady-state model)可描述程序的表現,並預測當稀釋率大於0.75 hr-1,微生物會有洗出(wash-out)的現象。
另利用分子生物技術進行16S rDNA的變性梯度明膠電泳指紋圖譜分析,觀察到產氫菌族群的多樣性隨著水力停留時間的縮短而愈趨單純,存在系統中優勢菌種主要為Clostridium sporogenes-like (99%)及Clostridium celerecrescens-like(99%),二者分別為典型的clostridia氨基酸代謝菌及纖維素分解菌,其生理特性與程序表現吻合,另利用多管發酵法探討菌群結構在不同稀釋倍數下的變動情形,於文中會有詳加討論;經由掃描式電子顯微鏡觀察,中溫厭氧產氫微生物以懸浮狀桿菌為主,菌相隨著水力停留時間的縮短,由複雜愈趨單純。
Hydrogen energy plays an important role in future energy system. Hydrogen is an energy carrier which can be produced from various sources. One of which is to convert organic matters to mixed gas (CO2 and hydrogen) by anaerobic fermentation of waste organics. Generally, compositions of wastewater are varied and complex. Different compounds may play different roles on hydrogen fermentation. In this study, biohydrogen process performances fed with dual substrates containing glucose and peptone at different loading (HRT) was evaluated.
Seeding microorganisms of the biohydrogen process were obtained from the upflow anaerobic sludge blanket (UASB) bioprocess of the food industry and were pretreated by boiling for over 30 minutes. Multiple substrates containing glucose (12 g/L) and peptone (8 g/L) were fed into an anaerobic hydrogen fermentation continuous-flow stirred tank reactor (CSTR). The temperature of the fermentor was maintained at 35°C. The CSTR was operated at different hydraulic retention times (HRT) which were 18, 12, 8, 6, 4, 2 and 1.45 hours, respectively. In the conditions of HRT longer than 1.45 hours, hydrogen production and cell growth would be maintained stable. Maximum hydrogen production rate, specific hydrogen production rate and hydrogen yield were 1,247 mmol H2/L/day, 9.5 L H2/g-VSS/day, and 5.0 mmole H2/g-CODapplied, respectively when the CSTR was operated at 2 hours of HRT.
Glucose was utilized for hydrogen production and degraded completely at different HRTs. But the role of peptone utilized by microorganisms changed at different HRTs. Peptone was used for biosynthesis and fermented to ammonia and organic acids when HRT was long. When HRT was short, most of the peptone, however, was utilized for biosynthesis or was remained in its organic nitrogen form, and only a slight amount of it was fermented into the ammonia. The fermented products were butyrate, acetate, formate and ammonia mainly. Shift of metabolic pathway was observed when HRT and loading were changed. In addition, a dual-substrate kinetic model was developed to describe performance of this process. Base on this model, complete wash-out would occur while dilution rate approaches 0.75 hr-1.
The microbial diversity was investigated by the molecular biotechnology of genomic DNA fingerprint analysis on 16S-rDNA. The results reveled that the diversity of hydrogen-producing bacteria became simpler as HRT was shortened. Clostridium sporogenes-like (99%) and Clostridium celerecrescens-like (99%) were dominant in the mesophilic biohydrogen process. They are typical proteolytic and cellulolytic species of clostridia, respectively. Furthermore, most probable number method was used for investigating microbial structure at different dilution ratios. Scanning electron micrographs of microbial populations revealed that rod suspension cells were dominant in mesophilic biohydrogen fermentor. It also showed that the microbial populations became simpler with decrease of HRT.
王永福、鄭幸雄、曾怡禎、白明德、蕭嘉瑢 (2002) 應用分子生物學方法研究分解複合基質之中溫產氫菌族群。第27屆廢水處理研討會論文集。
白明德,鄭幸雄 (1999) “厭氧生物產氫機制與程序操作策略之研究”, 國立成功大學環境工程研究所碩士論文。
白明德、鄭幸雄 (2001) 基質組成之glucose/peptone對厭氧氫發酵反應與微生物生長的影響,第26屆廢水處理研討會論文摘要集, 1-80。
白明德、鄭幸雄、趙禹杰、蕭嘉瑢、楊雅斐 (2002) 厭氧氫發酵程序中氫分壓的影響與重要性,第27屆廢水研討會論文集。
林秋裕、陳弘彬、謝旭揮(2003a)無機硫化合物對厭氧醱酵產氫之影響,第28屆廢水研討會論文集。
林秋裕、謝旭揮、陳弘彬(2003b)重金屬對厭氧生物產氫之影響,第28屆廢水研討會論文集。
郁揆民、李季眉 (2003) 紫色不含硫光合作用細菌產氫限制因子之研究,國立中興大學環境工程學研究所碩士論文。
梁德明、鄭幸雄、吳坤龍 (2002) Behavior of gas separation for submersed hollow fibers installed in an anaerobic hydrogen fermentor,第27屆廢水研討會論文集。
張仕旻、鄭幸雄 (2001) 利用薄膜反應器於高溫厭氧產氫生物程序之研究。國立成功大學環境工程學系碩士論文。
黃俊霖、陳晉照、林秋裕、劉文佐 (2000) 以分子生物技術進行厭氧生物產氫菌群結構之研究. 第25屆廢水處理研討會論文集, 321-326。
鄭幸雄、白明德、蔡遠瑋、王永福、蕭嘉瑢 (2003a) 厭氧產氫菌分解蛋白質之機制探討,第28屆廢水研討會論文集。
鄭幸雄、白明德、趙禹杰 (2003b) 厭氧產氫菌分解高分子碳水化合物及peptone之產氫機制,第28屆廢水研討會論文集。
鄭幸雄、李東峰、梁德明 (2000) 實廠厭氧生物反應槽產氫現象,第25屆廢水處理研討會論文集, 388-392。
鄭幸雄、林秋裕、曾怡禎、李季眉、林信一、林明瑞、陳幸德 (2003c) 複合基質生物產氫機制及程序應用之整合研究-2002年,第28屆廢水研討會論文集。
簡青紅、曾怡禎 (2003) 利用傳統培養方法和分子生物方法探討厭氧生物產氫反應槽的微生物社會結構,國立成功大學生物學研究所碩士論文。
蕭景庭、李季眉、董昀昌 (2000) 不同產氫光合作用細菌之最佳產氫條件研究, 338-344。
Adams, M. W., E. Eccleston, and J. B. Howard. 1989. Iron-sulfur clusters of hydrogenease I and hydrogenase II of Clostridium pasteurianum. Proc. Natl. Acad. Sci. USA, 86:4932-7.
Adams, M. W. 1990. Biochim. Biophys. Acta., 1020:115- 145;
Adams, M. W. W., L. E. Mortenson, and J. S. Chen. 1980. Hydrogenase. Biochim. Biophys. Acta. 594: 105-176.
Adams M. W. W., and E. I. Stiefel. 1998. Biological hydrogen production: not so elementary. Science. 282: 1842-1843.
Albracht, S. P. J. 2001. Spectroscopy-the functional puzzle. In: Hydrogen as a fuel : learning from nature, Cammack, R., Frey, M., Robson, R. (eds.), Taylor & Francis, London and New York.
Allison, C. and G.T. MacFarlane. 1990. Regulation of protease production in Clostridium sporogenes. Appl. Environ. Microbiol. 56:3485-3490.
Andel, J. G., G. R. Zoutberg, P. M. Crabbendam, and A. M. Breure. 1985. Glucose fermentation by Clostridium butyricum growth under a self generated gas atmosphere in chemostat culture. Appl. Microbiol. Biotechnol. 23: 21-26.
Andreesen J. R., H. Bahl, and G. Gottschalk. 1989. Introduction to the physiology and biochemistry of genus Clostridium. In: Clostridia, Minton N. P. and Clark J. D. (ed.) Plenum Press. New York. pp. 27-62.
Andrew, J.F., 1968. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnology and Bioengineering. X:707-721.
Asada, Y., Y. Koike, J.Schnackenberg, M. Miyake, I. Uemura, J. Miyake. 2000. Heterologous expression of clostridial hydrogenase in the cyanobacterium Synechococcus PCC7942. Biochimica et Biophysica Acta 1490:269-278.
Bai, M. D., S. S. Cheng, and I. C. Tseng. 2001. Biohydrogen produced due to peptone degradation by pretreated seed sludge. 2001 ASIAN WATERQUAL, IWA Asia-Pacific Regional Conference, Fukuoka, Japan.1, pp. 315-320.
Bai, M. D., S. S. Cheng, Y.F. Wang, and C.J. Hsiao. 2003. Effects of hydraulic retention time on hydrogen fermentation on multiple substrates. 2003 ASIAN WATERQUAL, IWA Asia-Pacific Regional Conference, 19-23, October, Bangkok, Thailand.
Bahl, H. and P. Dürre. 1993. Biotechnology Vol. 1 Biological Fundamentals. pp. 286 – 323.
Baily, J. E., and D. F. Ollis. 1986. Biochemical engineering fundamentals, model. 2nd. New York: McGraw-Hill
Baronofsky J. J., W. J. A. Schreurs, and E. V. Kashket. 1984. Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermaceticum. Appl. Environ. Microbiol. 48:1134-1139.
Blanch, H. W. and D. S. Clark. 1996. Biochemical engineering. Marcel Dekker, Inc., New York.
Breitenstein, A., A.Saano, M. Salkinoja-Salonen, J. R. Andreesen, U. Lechner. 2001. Analysis of a 2,4,6-trichlorophenol-dehalogenating enrichment culture and isolation of the dehalogenating member Desulfitobacterium frappieristrain TCP-A. Arch Microbiol 175 :133–142.
Breure, A.M., J. G. van Andel. 1984. Hydrolysis and acidogenic fermentation of a protein, gelatin, in an anaerobic continuous culture. Appl. Microbiol. Biotechnol. 20: 45–49.
Brosseau, J. D., and J. E. Zajic. 1982. Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum. Journal Chemical Technology and Biotechnology. 32: 496-502.
Bryant, M. P., J. T. Kroulik, L. A. Burkey, and H. G. Wiseman. 1952. A study of anaerobic bacteria present in grass silage. Bacteriol. Proc. 52:21-22.
Cammack, R. 2001. Origins, evolution and the hydrogen biosphere. In:Hydrogen as a fuel :learning from nature, Cammack, R., Frey, M., Robson, R. (ed.), Taylor&Francis, London and New York.
Canganella, F. and J. Wiegel. 1993. The potential of thermophilic clostridia in biotechnology. In:The Clostridia and Biotechnology, D. R. Woods, (eds.), Butterworth-Heinemann.
Cato, E.P., W.L. George, and S.M. Finegold. 1986. Genus Clostridium. In: Bergey’s Manual of Systematic Bacteriology Sneath, P.N., Mair, N.S., Sharpe, M.E. and Holt, J.G. (Eds.), pp. 1141-1200. Williams and Wilkins, Baltimore, MD.
Chen, J. S. and L. E. Mortenson. 1974. Purification and properties of hydrogenase from Clostridium pasteuriamun W5. Biochim. Biophys. Acta. 371: 283-298.
Chen, C. C. and C. Y. Lin. 2003. Using sucrose as a substrate in an anaerobic hydrogen-producing reactor. Advances in Environmental Research 7: 695–699.
Chen, C.C., C.Y. Lin, and J.S. Chang. 2001. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol.57, pp.56–64.
Cheng, S. S., I. C. Tseng., and M. D. Bai. 1999. Behavior study of anaerobic hydrogenation from different organic substrates with selected hydrogen production bacteria. Proc. of the 7th IWA Asic-Pacific Regional Conference, 1, Taipei, Taiwan. 759-764.
Cheng, S. S., S. T. Chen, M. D. Bai, S. M. Chang, and K. L. Wu. 2001. Anaerobic hydrogen production in mesophilic and thermophilic fermenting processes. Proceedings of 9th World Congress on Anaerobic Digestion 2001. Antwerpen. Belgium. 2, 249-251.
Dabrock, B., H. Bahl, and G. Gottschalk. 1992. Parameters affecting solvent production by Clostridium pasteuriamun. Appl. Environ. Microbiol. 58: 1233-1239.
Das, D., and T. N. Veziroglu. 2001. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy. 26: 13-28.
Desvaux, M., E. Guedon, and H. Petitdemange. 2000. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol. 66:2461-2470.
Duangmanee, T., S. Padmasiri, J.J. Simmons, L. Raskin, S. Sung. 2002. Hydrogen production by anaerobic microbial communities exposed to repeated heat treatment. WEFTEC 75th Annual Conference.
Durre, P., A. Kuhn, M. Gottwald, and G. Gottschalk. 1987. Enzymatic investigations on butanol dehydrogenase and butyraldehyde dehydrogenase in extracts of Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 26:268-272.
Fabiano, B., and P. Perego. 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy. 27: 149-156.
Fang, H. H. P. and H. Liu. 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82: 87-93.
Fang, H. H. P., H. Liu, and T. Zhang. 2002a. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng. 78: 44-52.
Fang, H. H. P., T. Zhang, and H. Liu. 2002b. Miccrobial diversity of a mesophilic hydrogen-producing sludge. Appl. Microbiol. Biotechnol. 58: 112-118.
Flythe, M. D. and J. B. Russell. 2004. The effect of pH and a bacteriocin (bovicin HC5) on Clostridium sporogenes MD1, a bacterium that has the ability to degrade amino acids in ensiled plant materials. FEMS Microbiology Ecology 47:215-222.
Frederick, M. A. 1999. Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology 4th ed. New York, Wiley.
Frey, M. 2002. Hydrogenases: Hydrogen-Activating Enzymes. Chem. Bio. Chem. 3:153-160.
Fumiaki, T., J. D. Chang, N. Mizukami, S. T. Tatsuo, and H. Katsushige. 1993. Isolation of a hydrogen-producing bacterium Clostridium beijerinckii strain AM21B, from termites. Can. J. Microbiol. 39:726-730.
Ghosh, S., J. R. Conrad, and Klass. 1975. Anaerobic acidogenesis of wastewater sludge. J. WPCF. 47:30.
Girbal, L., C. Croux, I. Vasconcelos, P. Soucaille. 1995. Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiology Reviews 17:287 –297.
Girbal, L., and P. Soucaille. 1994. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J. Bacteriol. 176: 6433-6438.
Girbal, L., I. Vasconcelos, and P. Soucille. 1994. Transmembrane pH of Clostridium acetobutylicum is inverted (more acidic inside) when the in vivo activity of hydrogenase is decreased. J. Bacteriol. 176: 6146-6147.
Gorwa, M.-F., C. Croux, and P. Soucaille. 1996. Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824. Journal of Bacteriology 178:2668-2675.
Gottschalk, G. 1985. Bacterial Metabolism 2nd. Springer-Verlag New York Inc. p.276.
Gottschalk G., and S. Peinemann. 1992. The anaerobic way of life. In: Prokaryote. A. Balows, H. G. Turper, M. Dworkin, W. Harder, & K. H. Schleifer, (eds). Vol. 1. Springer-Verlag, New York. pp. 300-311
Guwy, A. J., F. R. Hawkes, D. L. Hawkes, and A. G. Rozzi. 1997. Hydrogen production in a high rate fluidized bed anaerobic digester. Wat. Res., 21(6), 1291-1298.
Herbert, D., R. Elsworth, and R. C. Telling. 1956. The continuous culture of bacteria; a theoretical and experimental study. J. gen. Microbiol. 14:601-622.
Herbert, D., P. J. Philipps., and R. E. Strange. 1971. Carbohydrate analysis. Methods Enzymol. 5B: 265-277.
Heuer, H. M. Kresk, P. Baker, K. Smalla, and E. M. H. Wellington. 1997. Analysis of Actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241.
Heyndrickx, M., De Vos, P., De Ley, J. 1991. Fermentation characteristics of Clostridium pasteurianum LMG 3285 grown on glucose and mannitol. J. Appl. Bacteriol. 70:3233-3241.
Hippe, H., J. R. Andreesen, and G. Gottschalk. 1991. The genera Clostridium, pp:1800-1978. In: Albert, B., G. T. Hans, D. Martin, H. Wim, and K. Karl-Heinz (eds.), The prokaryotes. Vol II. Springer-Verlag, New York.
Hobson, P. N. 1973. The bacteriology of anaerobic sewage digestion. Process biochemistry. 8:19.
Horiuchi J., T. Shimizu, T. Kanno, M. Kobayashi. 1999. Dynamic behavior in response to pH shift during anaerobic acidogenesis with a chemstat culture. Biotech Tech 13:155–157.
Jones, D. T. and D. R. Woods. 1989. Solvent production. In: Clostridia, Minton N. P. and J. D. Clark, (ed.), Plenum Press. New York. pp. 105-144.
Jones, M. V. 1989. Modified atmospheres. In:Mechanisms of action of food preservation procedures. Gould, G. W., ( Ed.), Elsevier Applied Science, Essex, England. Pp. 247-284.
Junelles, A. M., R. Janati-Idrissi, H. Petitdemange, and R. Gay. 1988. Iron effect on acetone butanol fermentation. Curr. Microbiol. 17: 299-303.
Kaji, M., Y. Taniguchi, O. Matsushita, S. Katayama, S. Miyata, S. Morita, A. Okabe. 1999. The hydA gene encoding the H2-evolving hydrogenase of Clostridium perfringens: molecular characterization and expressionof the gene. FEMS Microbiology Letters 181:329-336.
Kalia, V. C., S. R. Jain, A. Kumar, and A. P. Joshi. 1994. Fermentationof bio-waste to H2 by Bacillus lichenoformis. World J. Microbiol. Biotechnol. 10:224-227.
Kashket, E. R. and Z. Y. Cao. 1995. Clostridial strain degeneration. FEMS Microbiol. Rev. 17: 307-315.
Kataoka, N., A. Miya., and K. Kiriyama. 1997. Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Proc. of the 8th International Conference on anaerobic digestion, 2, 383-390.
Kawasaki, S., T. Nakagawa, Y. Nishiyama, Y. Benno, T. Uchimura, K. Komagata, M. Kozaki, and Y. Nimura 1998. Effect of oxygen on the growth of Clostridium butyricum (type species of the genus Clostridium), and the distribution of enzymes for oxygen and for active oxygen species in Clostridia. Journal of Fermentation and Bioengineering 86:368-372.
Kostka, J. E., D. D. Dalton, H. Skelton, S. Dollhopf, and J. W. Stucki. 2002. Growth of Iron(III)-Reducing Bacteria on Clay Minerals as the Sole Electron Acceptor and Comparison of Growth Yields on a Variety of Oxidized Iron Forms. Applied and Environmental Microbiology 68: 6256–6262.
Kumar, A., S. R. Jain., C. B. Sharma., A. P. Joshi., and V. C. Kalia. 1995. Increased H2 production by immobilized microorganisms. World J. Microbiol. Biotechnol. 11: 156-159.
Kumar, N and D. Das. 2000. Production and purification of alpha-amylase from hydrogen -producing Enterobacter cloacae IIT-BT 08. Bioprocess Eng.;23,:pp.205-208.
Lambert, A. L., J. P. Smith and K. L. Dodds. 1991. Shelf life extension and microbiological safety of fresh meat: A review. Food Microbiol. 8: 267-297.
Lane, D. J. 1991. 16S/23S rRNA squencing. In: Nucleic Acid Techniques in Bacterial Systematics. Stackebrandt, E. and M. Goodfellow, (eds.), John Wiley and sons, New York. pp. 115-175.
Lawrence, A. W. 1978. Kinetics of methane fermentation in anaerobic treatment. J. WPCF. 12:2204.
Lawrence, A. W. and P. L. McCarty. 1969. Kinetics of methane fermentation in anaerobic treatment. J. Water Pollut. Contr. Fed. 41:R3.
Lay, J. J., Y. J. Lee, and T. Noike. 1999. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Wat. Res. 11: 2579-2586.
Lay, J. J. 2000. Modeling and optimization of anaerobic digested sludge converting stach to hydrogen. Biotechnol Bioeng. 68: 269-278.
Lay, J. J. 2001. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol and Bioeng ., 74(4):280-287.
Lee, Y. J., T. Miyahara, and T. Noike. 1999. Effect of pH on the microbial hydrogen fermentation. In: Proceedings of the 6th IAWQ Asian-Pacific Conference. Taipei. 215-220.
Lee, Y. J., T. Miyahara, and T. Noike. 2001. Effect of iron concentration on hydrogen fermentation. Bioresour Technol. 80: 227-231.
Lemon, B. J. and J. W. Peters. 1999. Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. Biochemistry 38:12969-73.
Liang, T. M., S. S. Cheng, and K. L. Wu. 2001a. Hydrogen production of chloroform inhibited granular sludge. Proc. of the IWA 2001 WATERQUAL Asia-Pacific Regional Conference, 1, Fukuoka, Japan. pp.863-868.
Liang, T. M., S. S. Cheng, S. M. Chang, C. J. Hsiao. 2003. Using a microfiltration membrane to stabilize anaerobic bioreactors in producing hydrogen gas. The 2003 IWA ASIAN WATERQUAL, IWA Asia-Pacific Regional Conference, 19-23, October, Bangkok, Thailand.
Liang, T. M., S. S. Cheng, and K. L. Wu. 2002. Behavioral study on hydrogen fermentaton reactor installed with silicone rubber membrane. Int. J. Hydrogen Energy, 27(11/12). pp.1157-1166.
Liang, T. M., K. L. Wu, and S. S. Cheng. 2001b. Effect of γ -alumina on anaerobic hydrogen production. Proceedings of 9th World Congress on Anaerobic Digestion 2001. Antwerpen. Belgium. 2, 119-121.
Lin, C. Y. and R. C. Chang. 1999. Hydrogen production during the anaerobic acidogenic conversion of glucose. J. Chem. Technol. Biotechnol. 76:498-500.
Lin, C. Y. and C. H. Lay. 2004. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy 29:41– 45
Lovitt, R. W., G. J. Shen, and J. G. Zeikus. 1988. Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J. Bacteriol. 170: 2809-2815.
Majizat, A., Y. Mitsunori, W. Mitsunori, N. Michimasa, and M. Jun’ichiro. 1997. Hydrogen gas production from glucose and its microbial kinetics in anaerobic systems. Wat. Sci. Tech. 36:279-286.
McCarty, P. L. 1964. Anaerobic Waste Treatment Fundamentals III. Public Works. 95: 91.
McCarty, P. L. 1972. Stoichiometry of biological reaction, Int. Conf. Toward a unified concept of biological waste treatment design. Atlanta Ga.
McInerney, M. J. 1988. Anaerobic hydrolysis and fermentation of fats and proteins. In: Biology of anaerobic microorganisms, Zehnder, A.J.B. (ed.), New York: Wiley,
Mead, G. C. 1971. The amino acid-fermenting clostridia. J. Gen. Microbiol. 67:47-56.
Miller, D. N., J. E. Bryant, E. L. Madsen, and W. C. Ghiorse. 1999. Evaluation and optimatization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65:4715-5724.
Miyake, J. 1998. Biohydrogen. Zaborsky et al. (eds), Plenum Press, New York.
Mizuno, O., R. Dinsdale, F. R. Hawkes, D. L. Hawkes, and T. Noike. 2000. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol. 73: 59-65.
Nochur, S. V., A. L. Demain, and M. F. Roberts. 1992. Carbohydrate utilization by Clostridium thermocellum: importance of internal pH in regulating growth. Enzyme Microb. Technol. 14: 338-349.
Noike, T., H. Takabatake, O. Mizuno, and M. Ohba. 2002. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. International Journal of Hydrogen Energy 27:1367– 1371.
Oblinger, J. L. and J. A. Koburger. 1975. Understanding and teaching the most probable number technique. J. Milk Food Technol. 38:127-141.
O’Brien, R. W. and J. G. Morris. 1971. Oxygen and growth and metabolism of Clostridium acetobutylicum. J. Gen. Microbiol. 68:307-318.
Onodera, H., T. Miyahara, and T. Nokie. 1999. Influence of ammonia concentration on hydrogen transformation of sucrose. Proc. of 7th IWQA. 1139-1144.
Owen, W. F., D. C. Stuckey, Jr., J. B. Herly, L. Y. Young, and P. L. McCarty. 1979. Bioassay for Monitoring Biochemical Methane Potential and Anaerobic Toxicity. Wat. Res. 13: 485-492.
Palop, M. L. L., S. Valles, F. Pinaga, and A. Flors. 1989. Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium celerecrescens sp. Nov. International journal of systematic bacteriology. 39:68-71.
Pavlostathis, S. G. and E. G. Gomez. 1991. Kinetics of anaerobic treatment. Wat. Sci. Tech. 24:35-59.
Payne, M.J., A. Chapman, and R. Cammack. 1993. Evidence for an [Fe]-type hydrogenase in the parasitic protozoan Trichomonas vaginalis. FEBS Lett. 317:101-104.
Peguin, S. and P. Soucaille. 1995. Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. Appl. Environ. Microbiol. 61: 403-405.
Peters, J. W. 1999. Structure and mechanism of iron-only hydrogenase. Current Opinion in Structural Biology. 9: 670-676.
Peters, J. W., W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt. 1998. X-ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution. Science 282:1853-1858.
Rachman, M. A., Y. Nakashimada, T. Kakizono, and N. Nishio. 1998. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl. Microbiol. Biotechnol. 49:450-454.
Ren, N., B. Wang, and F. Ma. 1995. Hydrogen bio-production of carbohydrate fermentation by anaerobic sludge process. In : Proceedings 68th Annual Water environmental Federal Conference. Miami, p. 145-152.
Riesner, D., G. Steger, R. Zimmat, R. A. Owens, M. Wagenhofer, W. Hillen, S. Vollbach, and K. Henco. 1996. Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis 10:377-389.
Robson, R. 2001. Biodiversity of hydrogenases. In:Hydrogen as a fuel :learning from nature, Cammack, R., Frey, M., Robson, R. (ed.), Taylor&Francis, London and New York.
Schoenheit, P., A. Brandis, and R. K. Thauer. 1979. Ferredoxin degradation in growing Clostridium pasteuriamun during periods of iron deprivation. Arch. Microbiol. 120: 73-76.
Schwartz, R. D. and F. A. Keller. 1982. Acetic acid production by Clostridium thermoacetium in pH-controlled batch fermentations at acidic pH. Appl. Environ. Microbiol. 43: 1385-1392.
Soni, B. K., P. Soucaille, and G. Goma. 1987. Continuous acetonbutanol fermentation: a global approach for the improvement in the solvent productivity in synthetic medium. Appl. Microbiol. Biotechnol. 25, 317–321.
Sparling, R., D. Risbey, and H. M. Poggi-Varaldo. 1997. Hydrogen production from inhibited anaerobic composters. Int. J. Hydrogen Energy, 36(6/7), 41-47.
Sundstion, D. W. 1979. Wastewater treatment, p.87. Prentic Hall Inc.
Storz, G., L. A. Tartaglia, S. B. Farr, and B. N. Ames. 1990. Bacterial defenses against oxidative stress. Trends Genet 6:363-368.
Taguchi, F., N. Mizukami, T. Saito-Takio, and K. Hasrgawa. 1995. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No 2. Canadian Journal of Microbiology. 41: 536-540.
Tanisho, S., N. Wakao, and Y. Kosako. 1983. Biological hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy. 16: 529-530.
Tanisho, S., N. Kamiya, and N. Wakao. 1989. Hydrogen evolution of Enterobacter aerogen depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bound hydrogenase. Biochimica. et. Biophysica. Acta. 973: 1-6.
Tanisho, S., and Y. Ishiwata. 1994. Continuous hydrogen production from molasses by the bacterium Enterobacter aerogen. Int. J. Hydrogen Energy. 19: 807-812.
Tanisho, S., M. Kuromoto, and N. Kadokura. 1998. Effect of CO2 removal on hydrogen production by fermentation. Int. J. Hydrogen Energy. 23: 559-563.
Terracciano, J. S., W. J. A. Schreurs, and E. R. Kashket. 1987. Membrance H+ conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: evidence for electrogenic Na+/H+ antiport in Clostridium thermoaceticum. Appl. Environ. Microbiol. 53:782-786.
Thauer, R. K., A. R. Klein, and G. C. Hartmann. 1996. Chem. Rev. 96:3031.
Ueno, Y.,T. Kawai, S. Sato, S. Otsuka, and M. Morimoto. 1995. Biological production of hydrogen from cellulose by natural anaerobic microflora. Journal of Fermentation and Bioengineering. 79: 395-397.
Ueno, Y., S. Otauka, and M. Morimoto. 1996. Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. Journal of Fermentation and Bioengineering. 82: 194-197.
Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol. 57: 555-562.
Van Den Heuvel, J. C. and H. H. Beeftink. 1987. Kinetic effects of simultaneous inhibition by substrate and product. Biotechnology and Bioengineering 31:718-724.
Vasconcelos, I., L. Girbal, and P. Soucaille. 1994. Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J. Bacteriol. 176: 1443-1450.
Wang, G. and D. I. C. Wang. 1984. Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Appl. Environ. Microbiol. 47:294-298.
Wang,Y. F., S. S. Cheng, I C. Tseng, M. D. Bai, and C. J. Hsiao. 2003. Comparison of Microbial Diversity of Hydrogen Fermentation Bioreactors Degrading Multiple Substrates (Glucose and Peptone). IWA Conference on ENVIRONMENTAL BIOTECHNOLOGY.
White, D. 1995. The physiology and biochemistry of prokaryotes. Oxford University Press, New York.
Yan, R. T., C. X. Zhu, C. Golemboski, and J. S. Chen. 1988. Expression of solvent-forming enzymes and onset of solvent production in batch culture of Clostridium butyricum. Appl Environ Microbiol 54:642–648.
Yang, H. and H. L. Drake. 1990. Differential effects of sodium on hydrogen- and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui. Appl. Environ. Microbiol. 56:81-86.
Yokoi, H., T. Ohkawa, J. Hirosse, S. Hayashi, and Y. Takasaki. 1995. Characteristics of hydrogen production by acid uric Enterobacter aerogen strain HO-39. Journal of Fermentation and Bioengineering. 80: 571-574
Yokoi, H., S. Mori, J. Hirose, S. Hayashi, and Y. Takasaki. 1998. H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol. Lett. 20:895-899.
Yu, H. Q. and H. H. P. Fang. 2000. Thermophilic acidification of dairy wastewater. Appl. Microbiol. Biotechnol. 54: 439-444.
Zhang, T., H. Liu, and H. H. P. Fang. 2003. Biohydrogen production from starch in wastewater under thermophilic condition. Journal of Environmental Management 69:149–156.
Zwietering, M. H., I. Jongenburger, F. M. Rombouts, and K. Van’t Riet. 1990. Modeling of bacteria growth curve. Appl. Environ. Microbio. 56(6), pp.1875-1881.