簡易檢索 / 詳目顯示

研究生: 黃偉聖
Huang, Wei-Sheng
論文名稱: 錐形流推導之凸起物外型暨超音速進氣口設計與空氣動力模擬分析
Design and Investigation of Aerodynamic Characteristics for the Conical-Flow-Derived Bumps and the Supersonic Inlet Apertures by using Numerical Analysis
指導教授: 呂宗行
Leu, Tzong-Shyng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 236
中文關鍵詞: 錐形流超音速進氣道三維等熵凸起物DSI 進氣道空氣動力學
外文關鍵詞: Conical flow, Supersonic inlet, Three-dimensional bump, Diverterless supersonic inlet, Aerodynamics
相關次數: 點閱:129下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 良好的進氣道需要有捕獲氣流、壓縮空氣並提供高總壓恢復的氣流以利發動機正常運作,因此進氣道前端的進氣口(Inlet aperture)幾何成為了進氣道氣動力構型初步設計上的重要研究主題。傳統進氣口採用邊界層隔板(Diverter)以避免進氣道吸入低能量的氣流,然而該設計亦使得重量及維護成本增加,現役五代戰機為了降低維護成本,並且仍維持優良的氣動性能及提升匿蹤能力,採用了一種稱作無邊界層隔板超音速進氣道的構型(Diverterless supersonic inlet, DSI),所謂DSI進氣道為一種在進氣口安裝某三維幾何面之先進進氣道設計,該三維幾何面稱作為凸起物(Bump),是一種以錐形流(Conical flow)為基礎流場進行流線追蹤生成的適型幾何,此進氣口能有效地在壓損最小下將邊界層內低能量氣流排開。如何設計DSI之凸起物以及DSI進氣口的幾何和性能分析為本研究重要的課題,本研究以馬赫數2.0之錐形流為進氣道設計點設計三維等熵(Isentropic)凸起物表面,以計算流體力學工具(CFD)模擬設計點上及設計點外凸起物之空氣動力特性,並再以模擬結果之流場為基礎設計DSI初步構型,使用CFD分析其性能。本研究的結果表明,以錐形流推導之凸起外型能夠在設計點上及設計點外將氣流壓縮、導開邊界層內的低能量氣流並且維持良好的總壓恢復能力,凸起物的高度差異影響了總壓恢復程度及阻力大小;以凸起物構型設計之DSI,其不同的尺寸造成震波結構的改變,使其氣流捕獲量及總壓恢復有所不同,阻力則受到凸起物幾何影響。DSI在設計點上及設計點外接滿足進氣道運作的基本需求,實現以錐形流推導之三維凸起物幾何為構型的進氣口初步設計。

    This study proposed the design and aerodynamic analysis of diverterless supersonic inlet (DSI). The DSI contains two main structures, one is a three-dimensional bump, and the other is the cowling. This study firstly investigated the flow field of different bump geometries. And secondly, this study analyzed the performance of the DSI. The bump geometries were designed by tracing streamlines in the conical flow, and the streamlines were released from two different locations, resulting in height differences for the bumps. This study also designed the transition from the bump to the internal duct, transition shoulder (T.S.). The T.S. was installed at the end of the bumps, and the shape of the T.S. was modified by adjusting the peak slope. This study provided two different T.S. shapes, and with the two different bump heights, there were four variant bumps to be investigated. The four variant bumps were mounted on the DSI, and the flow field of the bumps determined the size of the DSI cowling, causing discrepancies in the capture area. Finally, the simulation showed that the height of the DSI bumps and the modification of the T.S. contributed to different pressure gradients, causing various extents of the surface flow diversion and the drag. The sizes and the shaps of the DSI cowling influenced the structure of the shock system, resulting in different flow ratios, and the flow ratio to the total pressure recovery was highly related. All DSIs had a total pressure recovery higher than 90%.

    摘要 i Extended Abstract iii 誌謝 xiii 目錄 xv 表目錄 xix 圖目錄 xx 符號索引 xxxiv 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 進氣道目標概述 3 1.2.2 無邊界層隔板超音速進氣道 6 1.2.3 DSI凸起物設計 10 1.2.4 DSI相關研究 13 1.3 理論基礎 19 1.3.1 進氣道與發動機 19 1.3.2 震波(Shock wave) 21 1.3.3 外部壓縮超音速進氣道 23 1.3.4 錐形流(Conical flow) 28 1.3.5 乘波體(Wave rider) 32 1.3.6 進氣道流場與結構 34 1.3.7 進氣道性能 39 1.4 研究動機與目的 45 第二章 研究方法 47 2.1研究方法簡述 47 2.2數值分析軟體Fluent簡介 47 2.3網格類型 48 2.4紊流模型 49 2.5電腦輔助設計軟體 51 2.6模擬環境設定 51 2.7設計流程 52 第三章 外型與設定參數(凸起物) 54 3.1決定設計點 54 3.2等熵壓縮 55 3.3等熵錐流場與流線追蹤 57 3.4凸起物過渡肩設計 61 3.5邊界條件設定 70 3.6網格獨立性 71 第四章 結果與討論(凸起物) 78 4.1 設計點模擬結果 80 4.1.1 Bump-A_T.S.1 80 4.1.2 Bump-A_T.S.2 94 4.1.3 Bump-B_T.S.1 105 4.1.4 Bump-B_T.S.2 115 4.1.5 Bump-A系列與Bump-B系列比較 123 4.2 設計點外模擬結果 130 4.2.1 Bump-A系列無側滑角 130 4.2.2 Bump-B系列無側滑角 143 4.2.3 Bump-A系列含側滑角 155 4.2.4 Bump-B系列含側滑角 164 4.2.5 Bump-A系列與Bump-B系列設計點外比較 172 第五章 外型與設定參數(DSI) 177 5.1決定設計點 177 5.2 基準流場 178 5.3 外罩外型設計 181 5.4 唇邊外型設計 185 5.5 環境設定與邊界條件 186 第六章 結果與討論(DSI) 190 6.1 DSI-A_1 190 6.2 DSI-A_2 200 6.3 DSI-B_1 208 6.4 DSI-B_2 215 6.5 DSI比較 223 第七章 結論 228 7.1 凸起物 228 7.2 DSI 229 7.3 未來工作 230 參考文獻 231

    [1] K. Oswatitsch, "Pressure Recovery for Missiles with Reaction Propulsion at High Supersonic Speeds (The Efficiency of Shock Diffusers)," National Advisory Commitee for Aeronautics, vol. NACA TM 1140, 1944.
    [2] A. Ferri and L. M. Nucci, "The Origin of Aerodynamic Instability of Supersonic Inlets at Subcritical Conditions," National Advisory Commitee for Aeronautics, vol. NACA RM L50K30, 1951.
    [3] R. Scharnhorst, "An Overview of Military Aircraft Supersonic Inlet Aerodynamics," presented at the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012.
    [4] J. M. Seddon and E. L. Goldsmith, Intake Aerodynamics (AIAA Education Series). 1999.
    [5] D. Wallace F. and R. Scherrer, "Aerodynamic Principles for the Design of Jet-Engine induction Systems," National Advisory Commitee for Aeronautics, vol. NACA RM A55F16, 1956.
    [6] T. G. Piercy, "Factors Affecting Flow Distortions Produced by Supersonic Inlets," National Advisory Commitee for Aeronautics, vol. NACA RM E55L19, 1956.
    [7] T. Triantafyllou, "Total Pressure Distortion Levels at the Aerodynamic Interface Plane of a Military Aircraft," The Aeronautical Journal, vol. 119, no. 1219, pp. 1147-1166, 2015.
    [8] T. Triantafyllou, T. Nikolaidis, M. Diakostefanis, and P. Pilidis, "Numerical simulation of the airflow over a military aircraft with active intake," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 231, no. 8, pp. 1369-1390, 2016.
    [9] D. S. Dolling, "Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next?," AIAA Journal, vol. 39, no. 8, pp. 1517-1531, 2001.
    [10] J. W. Hamstra and B. N. McCallum, "Tactical Aircraft Aerodynamic Integration," in Encyclopedia of Aerospace Engineering, 2010.
    [11] M. C. Gridley and S. H. Walker, "Inlet and Nozzle Technology for 21st Century Fighter Aircraft," International Gas Turbine and Aexoengine Congress at Exhibition, 1996.
    [12] E. Hehs. (2000). JSF Diverterless Supersonic Inlet [Online]. Available: http://www.codeonemagazine.com/article.html?item_id=58.
    [13] J. W. Hamstra and T. G. Sylvester, "System and Method for Diverting Boundary Air," United States, 1998.
    [14] B. F. Lundy, J. D. Klinge, and B. C. Leland, "System, Method, and Apparatus for Designing Streamline Traced, Mixed Compression Inlets for Aircraft Engines," United States, 2006.
    [15] P. C. Simon, D. W. Brown, and R. G. Huff, "Performance of external-compression bump inlet at Mach numbers of 1.5 and 2.0 " National Advisory Commitee for Aeronautics, 1957.
    [16] J. John D. Anderson, Fundamentals of Aerodynamics McGraw-Hill, 2010.
    [17] M. Gridley and M. Cahill, "ACIS air induction system trade study," presented at the 32nd Joint Propulsion Conference and Exhibit, 1996.
    [18] R. A. Stonier, "Stealth aircraft & technology from World War II to the Gulf. Part I: History and background," SAMPE journal, vol. 27, no. 4, Part I, 1991.
    [19] 蔡樂, "Bump進氣道的機理與設計規律研究," 中國優秀碩士學位論文全文數據庫, vol. 2011, no. S1, 2011.
    [20] C. Wiegand, B. A. Bullick, J. A. Catt, J. W. Hamstra, G. P. Walker, and S. Wurth, "F-35 Air Vehicle Technology Overview," presented at the 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, Georgia, 2018.
    [21] 姬金祖, 武哲, and 劉戰合, "S彎進氣道隱身設計中彎度參數研究," 西安電子科技大學學報, vol. 36, no. 4, pp. 746-750, 2009.
    [22] (2020). F-35閃電II戰鬥機 [Online]. Available: https://zh.wikipedia.org/wiki/F-35%E9%96%83%E9%9B%BBII%E6%88%B0%E9%AC%A5%E6%A9%9F.
    [23] (2020). 殲-20 [Online]. Available: https://zh.wikipedia.org/wiki/%E6%AD%BC-20.
    [24] D. Küchemann, "Hypersonic Aircraft and Their Aerodynamic Problems," Progress in Aerospace Sciences, vol. 6, pp. 271-353, 1965.
    [25] H. Sobieczky, F. C. Doughert, and K. Jones, "Hypersonic Waverider Design from Given Shock Waves," presented at the 1st International Hypersonic Waverider Symposium, University of Maryland, USA, 1990.
    [26] E. B Saheby, X. Shen, and A. P. Hays, "Design and performance study of a parametric diverterless supersonic inlet," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 234, no. 2, pp. 470-489, 2019.
    [27] M. Svensson, "A CFD Investigation of a Generic Bump and its Application to a Diverterless Supersonic Inlet," Master, Department of Management and Engineering, Linköping University, 2008.
    [28] B. J. Tillotson, E. Loth, J. C. Dutton, J. Mace, and B. Haeffele, "Experimental Study of a Mach 3 Bump-Compression Flowfield," Journal of Propulsion and Power, vol. 25, no. 3, pp. 545-554, 2009.
    [29] 楊應凱, "梟龍飛機Bump進氣道設計," 南京航空航天大學學報, vol. 39, no. 4, 2007.
    [30] J. Masud, "Flow Field and Performance Analysis of an Integrated Diverterless Supersonic Inlet," The Aeronautical Journal, vol. 115, no. 1170, pp. 471-480, 2011.
    [31] R. Askari and M. R. Soltani, "Effects of Mach Number on the Performance of a Diverterless Supersonic Inlet," Journal of Aircraft, vol. 56, no. 4, pp. 1697-1707, 2019.
    [32] R. Ehrmayr and T. M. Berens, "Numerical Investigations on an Advanced Diverterless Supersonic Inlet with a Corner Bump in a Wing-Fuselage Installation," presented at the 2018 Joint Propulsion Conference, 2018.
    [33] 王嬌, 譚慧俊, and 黃河峽, "不同波系配置的鼓包壓縮面引起的激波/邊界層干擾特性," 航空動力學報, vol. 33, no. 2, 2018.
    [34] 鄭曉剛, 李怡慶, 歐陽智賢, 朱呈祥, and 尤延鋮, "基於密切原理的Bump進氣道外壓縮鼓包逆向設計," 航空動力學報, vol. 33, no. 9, 2018.
    [35] E. B. Saheby, H. Gouping, and A. Hays, "Design of Top Mounted Supersonic Inlets for a Cylindrical Fuselage," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 233, no. 8, pp. 2956-2979, 2018.
    [36] 谢雪明 and 郭荣伟, "無隔道進气道RCS特性實驗研究," ACTA AERONAUT ICA ET ASTRONAUT ICA SINICA, vol. 27, no. 2, 2006.
    [37] 樊華羽, 詹浩, 程詩信, and 米百剛, "基於EHVI加點準則的DSI進氣道氣動/隱身多目標代理優化方法研究," 西北工業大學學報, vol. 5, 2019.
    [38] H. I. H. Saravanamuttoo, G. F. C. Rogers, P. V. Straznicky, H. Cohen, and A. C. Nix, Gas Turbine Theory 7th ed. Pearson education Limited, 2017.
    [39] (2020). Oblique Shock Waves [Online]. Available: https://www.grc.nasa.gov/www/k-12/airplane/oblique.html.
    [40] A. R. Staff, "Equations, Tables, and Charts Compressible Flow," Ames Aeronautical Laboratory, 1953, vol. NACA TN 1135.
    [41] J. E. Hawkins, "YF-16 Inlet Design and Performance," Journal of Aircraft, vol. 13, no. 6, pp. 436-441, 1976.
    [42] H. Ran and D. Mavris, "Preliminary Design of a 2D Supersonic Inlet to Maximize Total Pressure Recovery," presented at the AIAA 5th Aviation, Technology, Integration, and Operations Conference 2005.
    [43] J. F. Connors and R. C. Meyer, "Design Criteria for Axisymmetric and Two-Dimensional Supersonic Inlets and Exits," vol. NACA TN 3589, 1956.
    [44] J. E. A. John, Gas Dynamics, Second ed. Allyn & Bacon, 1984.
    [45] K. D. Jones, "Waverider Design Methods for Non-Conical Shock Geometries," AIAA Theoretical Fluid Mechanics Meeting, vol. 2002, no. 3204, 2002.
    [46] l. D. V. Faro, "Supersonic Inlets," Advisory Group for Aerospace Research and Development, vol. AGARD-AG-102, 1965.
    [47] J. W. Slater, "Design and Analysis Tool for External Compression Supersonic Inlets," American Institute of Aeronautics and Astronautics, 2012.
    [48] X. Wenzhong and G. Rongwei, "A Ventral Diverterless High Offset S-shaped Inlet at Transonic Speeds," Chinese Journal of Aeronautics, vol. 21, no. 3, pp. 207-214, 2008.
    [49] A. R. Paul, P. Ranjan, V. K. Patel, and A. Jain, "Comparative Studies on Flow Control in Rectangular S-duct Diffuser Using Submerged-vortex Generators," Aerospace Science and Technology, vol. 28, no. 1, pp. 332-343, 2013.
    [50] A. Sóbester, "Tradeoffs in Jet Inlet Design: A Historical Perspective," Journal of Aircraft, vol. 44, no. 3, pp. 705-717, 2007.
    [51] J. Délery and J.-P. Dussauge, "Some Physical Aspects of Shock Wave/Boundary Layer Interactions," Shock Waves, vol. 19, no. 6, pp. 453-468, 2009.
    [52] T. B. Gatski and J.-P. Bonnet, Compressibility, Turbulence and High Speed Flow Second Edition. Academic Press, 2013.
    [53] E. L. GOLDSMITH and C. F. GRIGGS, "The Estimation of Shock Pressure Recovery and External Drag of Conical Centre-Body Intakes at Supersonic Speeds," vol. ARC RM 3035, 1959.
    [54] S. D. Kim, "Aerodynamic Design of a Supersonic Inlet with a Parametric Bump," Journal of Aircraft, vol. 46, no. 1, pp. 198-202, 2009.
    [55] M. S. Prasath, A. S. Shiva Shankare Gowda, and S. Senthilkumar, "CFD Study of Air Intake Diffuser," The International Journal Of Engineering And Science, vol. 3, no. 1, pp. 53-59, 2014.
    [56] J. L. Sims, "Tables for Supersonic Flow Aroud Right Circular Cones at Zero Angle of Attack," vol. NASA SP 3004, 1964.
    [57] S. Mölder, "The Busemann Air Intake for Hypersonic Speeds," IntechOpen, 2019.
    [58] E. L. Goldsmith and J. Seddon, Practical Intake Aerodynamic Design, First ed. AIAA Education Series, 1993.
    [59] (2013). Polyhedral, Tetrahedral, and Hexahedral Mesh Comparison [Online]. Available: https://www.symscape.com/polyhedral-tetrahedral-hexahedral-mesh-comparison.
    [60] G. T. Chapman and L. A. Yates, "Topology of flow separation on three-dimensional bodies," Appl Mech Rev, vol. 44, no. 7, pp. 329-340, 1991.

    無法下載圖示 校內:2026-08-17公開
    校外:2026-08-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE