簡易檢索 / 詳目顯示

研究生: 殷彰輝
Yin, Jhang-Huei
論文名稱: 以電漿輔助熱燈絲化學氣相沉積法成長氮化硼薄膜
Growths of Cubic Boron Nitride Films by Plasma-Assisted Hot-Filament Chemical Vapor Deposition
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 98
中文關鍵詞: 熱燈絲立方氮化硼鑽石
外文關鍵詞: hot-filament, cubic boron nitride, diamond
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  隨著科技日新月異,陶瓷材料的需求越來越高,鑽石膜薄、立方氮化硼薄膜等硬質薄膜的製備也備受矚目。立方氮化硼薄膜如同鑽石薄膜具有高硬度、低摩擦係數、耐磨耗和抗腐蝕等特性,在各式各樣的機械與電子元件上可有很多的應用,而且立方氮化硼對於鐵性材料和含氧環境在高溫下有良好的鈍性,也可摻雜成n-type與p-type半導體,未來用途更是不容小覷。
      本論文以矽晶圓(111)為基板,利用三氯化硼(BCl3)、氮氣(N2)、氫氣(H2)、氬氣(Ar)做為反應氣體,於感應偶合電漿化學氣相沉積(Inductively Coupled Plasma Chemical Vapor Deposition,ICP CVD)系統中,合成立方氮化硼(cubic-boron nitride)薄膜,藉由改變RF輸出功率、基板偏壓,探討製程參數與薄膜結構關係。在最佳的RF功率與基板偏壓參數條件下,可使立方氮化硼薄膜的含量從0%提升到55%。

    As the gradually growing technology, the applications of ceramic materials become more importance. There are many hard thin films have been researched, such as diamond films and cubic-boron nitride films.
    The extreme hardness, lower friction coefficient, higher wear resistance and chemical inertness of diamond make it useful for diverse mechanical and electronic applications . c-BN, isostructural to diamond, possesses many similar extreme properties to diamond. The special properties are inertness against iron and oxygen even at high temperature, as well as the possibility of use as n- and p-type doped semiconductors.
    In this study, cubic-boron nitride thin films were deposited on silicon (111) wafer by Inductively-Coupled-Plasma Chemical Vapor Deposition using BCl3, N2, H2, Ar as reactant gases. Films were deposited at various plasma density and negative bias to the substrate. Our result demonstrate that the deposition process was highly sensitive to plasma density and substrate bias voltage. By using the appropriate parameters for c-BN deposition mode, consisting of more than 45% cubic phase were successfully deposited.

    中文摘要 I Abstract II 致謝 III 目錄 V 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1前言 1 1.2 鑽石薄膜 3 1.2.1 奈米鑽石薄膜 11 1.3 立方氮化硼薄膜 14 1.4 研究動機 19 1.4.1高硬度鑽石薄膜 19 1.4.2 立方氮化硼薄膜 20 第二章 理論基礎與文獻回顧 21 2.1 鑽石(diamond) 21 2.1.1 高溫高壓合成(HTHP) 22 2.1.2震波合成法(shock-wave synthesis) 22 2.1.3低壓化學氣相沉積法(LPCVD) 23 2.1.3 化學氣相沈積法之動力學分析 25 2.2熱燈絲化學氣相沉積(HFCVD)鑽石膜 29 2.2.1 薄膜沈積機制 31 2.3立方氮化硼 35 2.3.1立方氮化硼薄膜成長影響因素 37 2.3.1.1 B、N的初始計量比 37 2.3.1.2 基材偏壓的重要性 38 2.3.1.2 基板溫度的影響 41 2.3.1.3 H、F、Cl在成長中的功能 42 2.3.1.4 鍍膜基材的影響 43 第三章 實驗參數與研究方法 45 3.1實驗流程 45 3.2 系統設備 46 3.2.1 熱燈絲系統 46 3.2.2 ICP輔助熱燈絲系統 47 3.2.3 電源供應系統 48 3.2.4 溫度量測系統 48 3.2.5 真空系統配備 48 3.2.5.1 抽氣系統 48 3.2.5.2 壓力檢測系統 49 3.2.6 反應氣體導入配置 50 3.3 實驗材料 50 3.3.1 實驗基板 50 3.3.2 實驗氣體 51 3.3.3 實驗藥品 52 3.4 實驗步驟 52 3.5 分析與鑑定 55 3.5.1 表面型態觀察(FESEM & AFM) 55 3.5.2薄膜結構分析(Raman & XRD&FTIR) 55 3.5.3 薄膜化學鍵結及元素組成分析(XPS) 59 3.5.4 薄膜機械性質測定(Nano-indentation probe) 60 第四章 高硬度鑽石薄膜製備 62 4.1 前言 62 4.2 探討甲烷濃度對鑽石薄膜的影響 62 4.2.1 薄膜表面型態與粗糙度之分析 63 4.2.2 薄膜成長速率分析 68 4.2.3 薄膜結構分析 70 4.2.4 薄膜機械性質分析 73 第五章 立方氮化硼薄膜製備 77 5.1 前言 77 5.2 探討ICP功率的影響 77 5.2.1薄膜表面型態分析 81 5.3 探討基板偏壓的影響 84 5.3.1 薄膜表面型態分析 88 5.3.2 薄膜鍵結分析 90 第六章 結論 92 第七章 參考文獻 94 自述 98

    1. 宋健民, 全華科技圖書有限公司, (2000).
    2. A. Badzian, T. Badzian, International Journal of Refractory Metals and Hard Materials 15, 3 (1997).
    3. N. Mohammad, Solid-State Electronics 46, 203 (2002).
    4. P. Mirkarimi, K. McCarty, D. Medlin, Materials Science and Engineering: R: Reports 21, 47 (1997).
    5. A. Bartl, S. Bohr, R. Haubner, B. Lux, International Journal of Refractory Metals and Hard Materials 14, 145 (1996).
    6. R. Mota, P. Piquini, T. Schmidt, A. Fazzio, International Journal of Quantum Chemistry 65, 941 (1997).
    7. W. Zhang, H. Kanda, S. Matsumoto, Applied Physics Letters 81, 3356 (2002).
    8. T. Taniguchi et al., Applied Physics Letters 81, 4145 (2002).
    9. Y. Panayiotatos, P. Patsalas, C. Charitidis, S. Logothetidis, Surface and Coatings Technology 151, 155 (2002).
    10. K. Kojima, K. Nose, M. Kambara, T. Yoshida, Journal of Physics D: Applied Physics 42, 055304 (2009).
    11. http://cohesion.rice.edu/naturalsciences/smalley/emplibrary/allotropes.jpg.
    12. J. Angus, Thin Solid Films 216, 126 (1992).
    13. K. Spear, J. Dismukes, Synthetic diamond: emerging CVD science and technology. (Wiley-Interscience, 1994).
    14. 宋健民, 58 (1995).
    15. H. Liu, D. Dandy, Diamond and Related Materials 4, 1173 (1995).
    16. W. Eversole, "SYNTHESIS OF DIAMOND W," 1962.
    17. D. Poferl, N. Gardner, J. Angus, Journal of Applied Physics 44, 1428 (1973).
    18. B. Spitsyn, L. Bouilov, B. Derjaguin, Journal of Crystal Growth 52, 219 (1981).
    19. S. Matsumoto, Y. Sato, M. Tsutsumi, N. Setaka, Journal of Materials Science 17, 3106 (1982).
    20. A. Badzian, R. DeVries, Materials Research Bulletin 23, 385 (1988).
    21. K. Suzuki, A. Sawabe, H. Yasuda, T. Inuzuka, Applied Physics Letters 50, 728 (1987).
    22. S. Nakao, M. Noda, H. Watatani, S. Maruno, Japanese Journal of Applied Physics 30, L45 (1991).
    23. R. Jackman, J. Beckman, J. Foord, Applied Physics Letters 66, 1018 (1995).
    24. H. Kawarada, K. Mar, A. Hiraki, Japanese Journal of Applied Physics 26, L1032 (1987).
    25. R. Ramesham, T. Roppel, C. Ellis, W. Baugh, D. Jaworske, Journal of Materials Research 6, 1278 (1991).
    26. D. Bhusari et al., Solid State Communications 107, 301 (1998).
    27. 廖建勛, "化工資訊," p. 20, 1998.
    28. S. Catledge, Y. Vohra, Journal of Applied Physics 84, 6469 (1998).
    29. A. Heiman et al., Journal of Applied Physics 89, 2622 (2001).
    30. D. Bhusari et al., Materials Letters 36, 279 (1998).
    31. C. Gu, X. Jiang, Journal of Applied Physics 88, 1788 (2000).
    32. X. Zhou et al., Applied Physics Letters 80, 3307 (2002).
    33. T. Yang, J. Lai, M. Wong, C. Cheng, Journal of Applied Physics 92, 4912 (2002).
    34. S. Jiao et al., Journal of Applied Physics 90, 118 (2001).
    35. V. Britun, A. Kurdyumov, I. Petrusha, Materials Letters 41, 83 (1999).
    36. D. Kester, R. Messier, Journal of Applied Physics 72, 504 (1992).
    37. H. Cheng, S. Kotake, Y. Suzuki, M. Senoo, Jpn. J. Appl. Phys 38, 6054 (1999).
    38. S. Matsumoto, W. Zhang, Diamond and Related Materials 10, 1868 (2001).
    39. D. Kester, K. Ailey, R. Davis, K. More, Journal of Materials Research 8, 1213 (1993).
    40. W. Zhang, S. Matsumoto, Q. Li, I. Bello, S. Lee, Advanced Functional Materials 12, 250 (2002).
    41. H. Yang, C. Iwamoto, T. Yoshida, Thin Solid Films 407, 67 (2002).
    42. H. Liu, D. Dandy, Diamond chemical vapor deposition: nucleation and early growth stages. William Andrew Publishing, 1995.
    43. H. Hall, Review of Scientific Instruments 31, 125 (1960).
    44. P. DeCarli, J. Jamieson, Science 133, 182 (1961).
    45. J. Carlsson, Thin Solid Films 130, 261 (1985).
    46. K. Jensen, W. Kern, Thin Film Processes II.
    47. D. Hoffman, Polyhedron 13, 1169 (1994).
    48. C. Morosanu, "Thin films by chemical vapor deposition," 1990.
    49. S. Matsumoto, Thin Solid Films 368, 231 (2000).
    50. A. Lettington, J. Steeds, Thin Film Diamond. Chapman & Hall, 1994.
    51. J. Butler, R. Woodin, Philosophical Transactions-Royal Society of London Series a Physical Sciences and Engineering 342, 209 (1993).
    52. 莊達人, 高立圖書有限公司, 146~158 (1995).
    53. W. Zhang et al., Applied Physics A: Materials Science & Processing 76, 953 (2003).
    54. S. Amagi, D. Takahashi, T. Yoshida, Applied Physics Letters 70, 946 (1997).
    55. S. Matsumoto, W. Zhang, Japanese Journal of Applied Physics Part 2 Letters 39, 442 (2000).
    56. T. Ichiki, T. Momose, T. Yoshida, Journal of Applied Physics 75, 1330 (1994).
    57. S. Bohr, R. Haubner, B. Lux, Diamond and Related Materials 4, 714 (1995).
    58. P. Mirkarimi et al., Journal of Materials Research 9, 2925 (1994).
    59. D. McKenzie et al., Nuclear Instruments and Methods in Physics Research B 106, 90 (1995).
    60. J. Ye, H. Oechsner, S. Westermeyr, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 19, 2294 (2001).
    61. I. Konyashin, J. Loeffler, J. Bill, F. Aldinger, Thin Solid Films 308, 101 (1997).
    62. W. Zhang, S. Matsumoto, Chemical Physics Letters 330, 243 (2000).
    63. K. Larsson, J. Carlsson, J. Phys. Chem. B 103, 6533 (1999).
    64. H. Sachdev, M. Strauss, Diamond & Related Materials 9, 614 (2000).
    65. W. Kulisch, R. Freudenstein, A. Klett, M. Plass, Thin Solid Films 377, 170 (2000).
    66. P. Mirkarimi, D. Medlin, K. McCarty, J. Barbour, Applied Physics Letters 66, 2813 (1995).
    67. X. Zhang et al., Nature Materials 2, 312 (2003).
    68. W. Zhang et al., Applied Physics Letters 85, 1344 (2004).
    69. J. Pascallon et al., Materials Science and Engineering B 59, 239 (1999).
    70. W. Callister, "Materials science and engineering: an introduction," New York, pp. 349-351, 2003.
    71. B. Kim, K. Hiraga, K. Morita, Y. Sakka, Nature 413, 288 (2001).
    72. D. Morris, Mechanical behaviour of nanostructured materials. (Trans Tech Publications, 1998).
    73. R. Siegel, G. Fougere. (Aedermannsdorf, Switzerland: Trans Tech Publications, 1997), vol. 235, pp. 851-860.
    74. J. Schiotz, T. Vegge, F. Di Tolla, K. Jacobsen, Physical Review B 60, 11971 (1999).
    75. J. Pascallon et al., Diamond and Related Materials 8, 325 (1999).
    76. C. Chan et al., Diamond and Related Materials 12, 1162 (2003).
    77. W. A. Y. H. Saitoh, Diamond Related. Materials 1, 137. (1992).
    78. Z. Zhou et al., Surface and Coatings Technology 128, 334 (2000).
    79. D. Kim, E. Byon, S. Lee, J. Kim, H. Ruh, Thin Solid Films 447, 192 (2004).
    80. K. Park, D. Lee, K. Kim, D. Moon, Applied Physics Letters 70, 315 (1997).
    81. K. Klabunde, Thin films from free atoms and particles. (Academic Pr, 1985).
    82. A. Zunger, A. Katzir, A. Halperin, Physical Review B 13, 5560 (1976).
    83. J. Boo, C. Rohr, W. Ho, Journal of Crystal Growth 189, 439 (1998).
    84. R. Trehan, Y. Lifshitz, J. Rabalais, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 8, 4026 (1990).
    85. C. Popov et al., Thin Solid Films 312, 99 (1998).

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE