| 研究生: |
張耿豪 Chang, Keng-Hao |
|---|---|
| 論文名稱: |
以無電鍍逐層析鍍法製備氫氣選透性鈀銀合金/氧化鋁複合膜之研究 Study on Hydrogen Permselective PdAg Alloy/Al2O3 Composite Membranes Prepared by Successive Electroless Plating Technique |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 氫氣透過 、鈀銀複合膜 、無電鍍逐層析鍍法 |
| 外文關鍵詞: | Palladium-silver alloy composite membrane, hydrogen permeation, successive electroless-plating technique |
| 相關次數: | 點閱:102 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係以無電鍍逐層析鍍法製備鈀銀合金/氧化鋁複合膜,探討鈀、銀之逐層析鍍速率及熱處理條件對鈀銀膜層晶態及表面微結構之影響;另外,針對不同複合膜亦進行氮氣及氫氣之氣體透過實驗,並解析其透過行為。
在無電鍍析鍍方面,藉由建立鈀、銀之析鍍速率,可以利用析鍍時間準確來控制鈀、銀組成。以鍍覆Pd77Ag23膜層為例,可在氧化鋁基材上先析鍍1 h之鈀膜,再繼續析鍍45 min之銀膜,便可得到鈀銀比例為77:23之Pd/Ag二層式複合膜,其厚度約為4.4 μm。
在熱處理條件之探討方面,由 XRD分析結果可知,600 ℃持溫42 h以上或550 ℃持溫72 h以上,均可得到單一之合金相。以Fick’s law理論模擬非穩態下鈀與銀層交互擴散之結果可知,550 ℃熱處理之實驗結果與模擬結果相符,且預期在500 ℃以下,經15日之熱處理,合金相仍不易形成。另外,以Pd/Ag/Pd三層式析鍍所得膜層在550 ℃縮短持溫時間至60 h時,即可形成合金相,此乃因膜層內擴散距離縮短之故。
由Pd/Ag二層式複合膜之氣體透過結果發現,由於膜層尚有針孔(pinholes)存在,故可測得氮氣之洩漏(leakage)。當溫度在150-300 ℃,操作壓力在125-250 kPa,氮氣之透過係數約為10-8-10-10 mole/m2-sec-Pa,其透過行為可以Knudsen擴散及黏性流動來描述;而氫氣透過速率可以溶解-擴散機制來加以描述,即可以 來表之。其中 值約在10-8 mole/m2-sec-Pa,n值則為0.95-0.99間。由於n值趨近於1,顯示其速率決定步驟為表面反應,且活化能約為23.7 kJ/mol。另外,氫/氮分離係數隨著溫度上升而增高。比較各複合膜之特性及氣體透過結果發現,Pd/Ag/Pd三層式複合膜為最佳,其氫氣透過速率最大(約為10-7 mole/m2-sec-Pa),且分離係數可達40。
In this study, palladium-silver alloy/Al2O3 composite membranes were prepared by successive electroless plating technique. The Pd and Ag plating rates, surface morphology and heat treatment condition were investigated. Furthermore, the permeability and selectivity of gases, i.e., hydrogen and nitrogen, were also studied.
Based on the Pd and Ag plating rates, a 4.4 μm-thick Pd77Ag23 membrane was obtained by 1 h of palladium plating and following by 45 min of silver plating.
From XRD analysis, it was found that a complete alloy structure could be formed under heating at 550 ℃ for more than 60 h or 600 ℃ for more than 42 h in 10% H2/Ar atmosphere. Fick’s 2nd law was used to simulate the unsteady-state interdiffusion between Pd and Ag layers during heat treatment. In addition, it shows that a complete alloy phase can not be achieved at temperatures below 500 ℃ for 15 days. The composition profiles of Pd and Ag in the metal layers obtained at 550 ℃ were in agreement with those simulations. For the Pd/Ag/Pd layers obtained from the time required for attaining alloy phase at 550 ℃ could be reduced to 60 h due to the reduction of diffusion distances between layers.
From gas permeation based of Pd/Ag composite membrane, the nitrogen leakage could be detected arising from the pinholes of Pd/Ag layer. At temperatures of 150-300 ℃, and transmembrane pressures of 125-250 kPa, the N2 permeability was in the range of 10-8-10-10 mole/m2-sec-Pa, which was controlled by the Knudsen diffusion and Poiseuille flow. Besides, the H2 permeation rate could be described via the solution-diffusion model with a mathematical expression of , in which the Fo value was estimated about 10-8 mole/m2-sec-Pa and the n value was about 0.95-0.99. Since the n value was approaching to unity, it was inferred that the H2 permeation rate was controlled by the surface reaction step with the activation energy of 23.7 kJ/mole. Moreover, the selectivity of H2/N2 increased with increasing the temperature. It was also found that, so far, the Pd/Ag/Pd based composite membranes demonstrated the best performances among various prepared membrane, e.g., large hydrogen permeability of 10-7 mole/m2-sec-Pa and high H2/N2 selectivity up to 40.
1. F.A. Lewis, The Palladium Hydrogen System, 94 (1967).
2. A.C. Makrides, J. Phy. Chem., 68(8), 2160 (1964).
3. A.G. Knapton, Platinum Met. Rev., Vol. 21(2), 44-50 (1977).
4. S. Tosti, L. Bettinali, S. Castelli, F. Sarto, S. Scaglione, and V. Violante, J. Membrane Sci., 196, 241-249 (2002).
5. V. Jayaraman, Y.S. Lin, M. Pakala, and R.Y. Lin, J. Membrane Sci., 99, 89-100 (1995).
6. J.N. Armor, J. Membrane Sci., 147, 217-233 (1998).
7. G.N. Burl, and P. J. Dobson, Thin Solid Films, 75, 383 (1981).
8. Y.S. Cheng, M.A. Peña, J.L. Fierro, D.C.W. Hui, and K.L. Yeung, J. Membrane Sci., 204, 329-340 (2002).
9. Z.Y. Li, H. Maeda, K. Kusakabe, S. Morooka, H. Anzai, and S. Akiyama, J. Membrane Sci., 78, 247 (1993).
10. S.E. Nam, S.H. Lee, and K.H. Lee, J. Membrane Sci., 153, 163-173 (1999).
11. X.L. Pan, N. Stroh, H. Brunner, G.X. Xiong, and S.S. Sheng, Separation, and Purification Technology, 32,
265-270 (2003).
12. A. Li, W. Liang, and R. Hughes, Thin Solid Films, 350, 106-112 (1999).
13. K. Hou, and R. Hughes, J. Membrane Sci., 214, 43-55 (2003).
14. H.B. Zhao, G.X. Xiong, and G.V. Baron, Catalysis
Today, 56, 89-96 (2000).
15. K. L. Yeung, and A. Varma, AIChE J., 41(9), 2131-2139 (1995).
16. J. Shu, B.P.A. Gr,andjean, E. Ghali, and S. Kaliaguine, J. Membrane Sci., 181-195 (1993).
17. J.N. Keuler, L. Lorenzen, R.D. Sanderson, V. Prozesky, and W.J. Przybylowicz, Thin Solid Films, 347, 91-98 (1999).
18. K. Yamakawa, M. Egr, B. Ludescher, and M. Hirsher, J. Alloys, and Compounds, 352, 57-59 (2003).
19. H.B. Zhao, K. Pflanz, J.H. Gu, A.W. Li, N. Stroh, H. Brunner, and G.X. Xiong, J. Membrane Sci., 142, 147-157 (1998).
20. K.L. Yeung, S.C. Christiansen, and A. Varama, J. Membrane Sci., 159, 107 (1999).
21. 朱秦億,鈀及鈀銀複合膜之製備、特性分析及其氫/氮選透性之研究,國立成功大學化學工程研究所博士論文 (2004).
22. 魏明治,鈀/氧化鋁複合膜之製備及其氫氣選透性之研究,國立成功大學化學工程研究所博士論文 (2000).
23. I. Karakaya, and W.T. Tompson, Binary Alloy Phase Diagrams.
24. P. Shewmon, Diffusion in Solids (1989).
25. A.H. Cotterll, Theoretical Structural Metallurgy
(1957).
26. J.P. Stark, Solid State Diffusion (1977).
27. J. Nowotny, Solid State Phenomena, Vol. 21-22
(1991).
28. G.E. Murch, Defect, and Diffusion Forum, Vol. 83 (1992).
29. G.E. Murch, and Z. Qin, Defect, and Diffusion Forum, Vol. 109-110 (1994).
30. G.E. Murch, Atomic Diffusion Theory in Highly Defective Solids (1980).
31. 彭國倫,精通Fortran 90 程式設計,碁峰資訊 (1997).
32. 石延平,數值分析法,電子計算機科學叢書 (1971).
33. D.S. Scott, and F.A Dullien, AIChE J., 8, 113-117 (1962).
34. K. Keizer, R.J.R. uhlhorn, V.T. Zaspalis, and A.J. Burggraaf, Key Eng. Mater., 61/62, 143-154 (1991).
35. A.L. Athayde, R.W. Baker, and P. Nguyen, J. Membrane Sci., 94, 299 (1994).
36. 陳慧英,氧化鋁薄膜之製備及其在氣體分離上之應用,國立成功大學化學工程研究所博士論文 (1995).
37. N. Feldstein, and J. A. Weiner, Plating, Feb., 140-141 (1972).
38. 楊大毅,鈀銀合金/氧化鋁複合膜之製備及其應用之研究,國立成功大學化學工程研究所博士論文 (1999).
39. A.E. Pap, K. Kordás, R. Peura, and S. Leppävuori, App. Surface Sci., 201, 56-60 (2002).
40. I.P. Mardilovich, E. Engwall, and Y.H. Ma, Desalination, 144, 85-89(2002).
41. F. Morón, M.P. Pina, E. Urriolabeitia, M. Menéndez, and J. Santamaría, Desalination, 147, 425-431 (2002).
42. J.N. Keuler, and L. Lorenzen, J. Membrane Sci., 195, 203-213 (2002).
43. Y.S. Cheng, and K.L. Yeung, J. Membrane Sci., 182, 195-203 (2001).
44. S. Uemiya, N. Sato, H. Andom, Y. Kude, T. Matsuda, and E. Kikuchi, J. Membrane Sci., 303-313 (1991).
45. J.N. Keuler, L. Lorenzen, and S. Miachon, Separation Science and Technology, 37(2), 379-401 (2002).
46. Y. Zhang, T. Ozaki, M. Komaki, and C. Nishimura, J. Alloys and Compounds, 356-357, 553-556 (2002).
47. Z.Q. Ma, P. Chang, and T.S. Zhao, J. Membrane Sci., 215, 327-336 (2003).
48. A.D. Le Claire, J. Nuclear Materials, 69-70, 70-96 (1978).
49. G.E. Henein, and J.E. Hilliard, J. Appl. Phys., 55(8), 2895-2900 (1984).
50. L. Slifkin, D. Lazarus, and T. Tomizuka, J. Appl.
Phys., 23(9), 1032-1034 (1952).
51. J.B. Adams, S.M. Foiles, and W.G. Wolfer, J. Mater. Res., 4(1), 102-112 (1988).
52. S.J. Lee, S.M. Yang, and S.B. Park, J. Membrane Sci., 96, 223-232 (1994).
53. G.N. Burland, and P.J. Dobson, Thin Solid Films., 75(4), 383-390 (1981).
54. G.J. Grashoff, C.E. Pilkington, and C.W. Corti, Platinum Met. Rev., 27 157-169 (1983).
55. G.L. Holleck, J. Chem. Phys., 74 , 503 (1970).
56. M. Tsapatsis, and G.R. Gavalas, AIChE J., 38, 47 (1992).
57. R. Goto, Kagaku Kogaku, 34, 381 (1970).
58. A. Li, W. Liang, and R. Hughes, Catalysis Today, 56, 45-51 (2000).
59. S.N. Paglieri, K.Y. Foo, J.D. Way, Ind. Eng. Chem. Res., 38, 1925-1936 (1999).
60. Y.M. Lin, and M.H. Rei, Int. J. Hydrogen Energy, 25, 211 (2000).
61. E. Kikuchi, Y.Nemoto, M. Kajiwara, S. Uemiya, and
T. Kojima, Catalysis Today, 56, 75-81 (2000).
62. Y. Guo, G. Lu, Y. Wang, and R. Wang, Separation and Purification Technology, 32, 271-279 (2003).
63. Y.M. Lin, and M.H. Rei, Catalysis Today, 67, 77-84 (2001).
64. V. Höllein, m. Thornton, P. Quicker, and R. Dittmeyer, Catalysis Today, 67, 33-42 (2001).
65. K.S. Chou, and S.M. Wang, J. Chin. Inst. Chem. Engrs., 31(5), 499-506 (2000).
66. N. Itoh, N. Tomura, T. Tsuji, and M. Hongo, Microporous and Mesoporous Meaterials, 39, 103-111 (2000).
67. A. Li, W. Liang, and R. Hughes, Separation and Purification Technology, 15, 113-119 (1999).
68. K. Hou, and R.Hughes, J. Membrane Sci., 206, 119-130 (2002).
69. H.D. Tong, F.C. Gielens, H.T. Hoang, J.W. Berenschot, M.J.De Boer, J.G.E. Gardeniers, H.V. Jansen, W. Nijdam, C.J.M. van Rijn, and M.C. Elwenspoek, 688-691.
70. S.Y. Lu, and Y.Z. Lin, Thin Solid Films, 376, 67-72 (2000).
71. Y.S. Cheng, and K.L. Yeung, J. Membrane Sci., 158, 127-141 (1999).
72. B. McCool, G. Xomeritakis, and Y.S. Lin, J. Membrane Sci., 161, 67-76 (1999).
73. B.A. McCool, and Y.S. Lin, J. Material Sci., 36, 3221-3227 (2001).
74. J. Shu, B.P.A. Grandjean, E.Ghali, and S. Kaliaguine, J. Electrochem. Soc., 140(11), 3175-3180 (1993).
75. G. Xomeritakis, and Y.S. Lin, J. Membrane Sci., 120, 261 (1996).