簡易檢索 / 詳目顯示

研究生: 何哲全
Ho, Che-chuan
論文名稱: 變化趨勢的定性分類在模糊診斷上之應用
Fuzzy Diagnosis Method Based on Qualitative Trend Classification
指導教授: 張珏庭
Chang, C. T.
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 100
中文關鍵詞: 變化趨勢失誤診斷
外文關鍵詞: trend, fault diagnosis
相關次數: 點閱:72下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中我們利用模糊推論來鑑識線上數據的變化趨勢並應用在失誤診斷上面。此方法需以兩階段執行:首先在離線準備階段,我們依照動態特徵將變化趨勢分為十一類,接著根據轉換函數以及有向圖可以推論出每一變數的動態行為及失誤傳遞路徑,並據以建構出三種不同的IF-THEN法則,接下來的線上診斷是依三層式推論架構執行,在第一層架構中,主要將線上數據依上述十一種變化趨勢分類,而第二層架構則是鑑識出每一變數的響應型式,再利用第三層架構來判斷出不同變數間的失誤傳遞路徑是否與有向圖模式相符,最後以案例研究之模擬結果來驗證此方法的可行性。

    In this study, fault diagnosis based on trend recognition exhibited in the sensors measuring the process is considered. A two-staged strategy is employed: (1) in the off -line preparation stage, the characteristic trend relate to possible observed variables are classified as eleven kind of trend language of primitives. According to the primitives, dynamic behavior with trend information in each measured variable can be inferred by the transfer function on a specified fault. In addition, fault propagation paths are also inferred by SDG model. Finally, the inferred dynamic behavior and propagation paths will be coded into three different IF-THEN rules with trend language of primitives. (2) On-line implementation stage, a three layer fuzzy inference system is adopted. In first layer, identifying the most likely trend based on the similarity between observed trend and the dynamic behaviors. Second layer is used to evidence the validity the dynamic sequences relate to each variable. Third layer consider the fault propagation path between different variables. Finally, simulation studies have been carried out to demonstrate the feasibility of the proposed approach.

    中文摘要............................................................................................I 英文摘要...........................................................................................II 誌謝..................................................................................................III 表目錄..............................................................................................VI 圖目錄...........................................................................................VIII 第一章 緒論................................................................................1 第二章 模糊診斷方法................................................................5 2.1 有向圖...................................................................................6 2.2 失誤樹與最小切集合...........................................................7 2.3 症候發生順序.......................................................................9 2.4 候選型式與IF-THEN 模糊法則.........................................10 2.5 線上診斷架構......................................................................17 2.6 例題......................................................................................18 第三章 線上數據變化趨勢之鑑認及在失誤診斷上的應用....23 3.1 統計程序管制......................................................................24 3.2 趨勢的定義..........................................................................25 3.3 雙層式趨勢鑑識架構..........................................................26 3.4 第三層推論架構..................................................................42 3.4.1 樹狀有向圖..................................................................42 3.4.2 前饋迴路......................................................................44 3.4.3 回饋迴路......................................................................46 3.4.4 案例測試......................................................................47 第四章 應用案例.......................................................................61 4.1 雙水槽液位控制系統..........................................................61 4.2 串級控制器系統..................................................................70 第五章 結論與展望....................................................................81 參考文獻 ...........................................................................................83 附錄A:單水槽液位控制系統模型.................................................85 附錄B:雙水槽液位控制系統模型.................................................87 附錄C:雙水槽系統m4(+1)之轉換函數.........................................89 附錄D:雙水槽系統m5(+1)之轉換函數.........................................91 附錄E:串級控制器系統.................................................................93 附錄F:串級控制器系統{ m4(+1),CV-06 sticks}之轉換函數...95 附錄G:串級控制器系統{ m5(+1),LT-03 sticks}之轉換函數...97 附錄H:串級控制器系統{ m4(+10)}之轉換函數..........................99

    Chang, S. Y., Chang, C. T. A-fuzzy-logic based fault diagnosis strategy for process control loops. Chemical Engineering Science 58, 3395-3411, 2003.
    Chang, S. Y., Lin, C. R., Chang, C. T. A fuzzy diagnosis approach using dynamic fault tree. Chemical Engineering Science 57, 2971-2985, 2002.
    Chen, J. Y., Chang, C. T., Fuzzy diagnosis method for control systems with coupled feed forward and feedback loops. Chemical Engineering Science 61, 3105-3128, 2006.
    Chen, J. Y., Chang, C. T., Systematic enumeration of fuzzy diagnosis rules for identifying multiple faults in chemical processes. Industrial & Engineering Chemistry Research 46, 11, 3635-3655, 2007.
    Dash, S., Rengaswamy, R., Venkasubramanian, V. Fuzzy-logic based trend classification for fault diagnosis of chemical process. Computer and Chemical Engineering 27, 347-362, 2003.
    Dash, S., Venkasubramanian, V. Challenges in the industrial applications of fault diagnostic systems. Computer and Chemical Engineering 24 785-791, 2000.
    Henley, E. J., Kumamoto, H. Reliability engineering and risk assessment. Prentice-Hall, Inc., Englewood Cliff, New Jersey, U.S.A., 1981.
    Hoskins, J. C., Kalivur, K. M., Himmeblau, D. M. Fault diagnosis in complex chemical-plants using artificial neural networks. A.I.Ch.E. Journal 37, 137, 1991.
    Iri, M., Aoki, K., O’Shima, E., Matsuyama, H. An algorithm for diagnosis of system failure in the chemical process. Computers Chemical Engineering 3, 489, 1979.
    Ju, S. N., Chen, C. L., Chang, C. T. Constructing fault trees for advanced process control systems-application to cascade control loops. IEEE Transactions on Reliability 53, 43-60, 2004.
    Mathworks, 2002a. Fuzzy logic toolbox-user guid. The Mathworks Inc.
    Mathworks, 2002b. SIMULINK-dynamic system simulation for MATLAB-using simulink. The Mathworks Inc.
    Petti, T. F., Klein, J., Dhurjati, P. S. Diagnostic model processor: Using deep knowledge for process fault diagnosis. A.I.Ch.E. Journal 36, 565, 1990.
    Sugeno, M. Industrial Applications of Fuzzy Control. Elsevier Science Pub. Co, 1985.
    Ulerich, N. H., Powers, G. J. Online hazard aversion and fault diagnosis in chemical prosces: The digraph + fault-tree method. IEEE Transactions on Reliability 37, 171-177, 1988.
    Venkasubramanian, V., Rengaswamy, R., Kavuri, S. N., Yin, K., A review of process fault detection and diagnosis Part III: Process history based methods. Computer and Chemical Engineering 27, 327-346, 2003.

    下載圖示 校內:立即公開
    校外:2008-07-25公開
    QR CODE