簡易檢索 / 詳目顯示

研究生: 洪國書
Hung, Kuo-Shu
論文名稱: 人體脂肪幹細胞對於糖尿病小鼠傷口癒合的免疫調節
Immunomodulation of human adipose-derived stem cells for diabetic mice wound healing
指導教授: 江伯敏
Chiang, Po-Min
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所碩士在職專班
Institute of Clinical Medicine(on the job class)
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 33
中文關鍵詞: 人體脂肪幹細胞糖尿病傷口糖尿病足潰瘍傷口癒合免疫調節巨噬細胞轉化
外文關鍵詞: human adipose derived stem cells, diabetic wound, diabetic foot ulcer, wound healing, immunomodulation, macrophage transition
ORCID: 0000-0003-4782-2362
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 糖尿病及其併發症糖尿病潰瘍的盛行率逐年升高造成健康及國家經濟負擔,不僅是台灣、也是全球性議題。糖尿病導致的慢性傷口為臨床上常見問題,糖尿病足潰瘍若治療不彰有高截肢率及死亡率。某些難以癒合的糖尿病傷口,使用諸多傳統治療包括換藥、特殊敷料、清創等方式也不見起色。面對這樣的困境,再生醫學的細胞治療開始受到注意;已知糖尿病潰瘍慢性發炎的病理機制與巨噬細胞亞型轉換有關,細胞治療藉由調控免疫來治療糖尿病傷口極具展望;其中,脂肪幹細胞因為取得方法容易且低風險、單一次取得細胞量大、較不具免疫排斥性等優點,成為一個很有希望的細胞來源。本實驗先建立小鼠糖尿病傷口模型,採用成功分離培養的人體脂肪幹細胞局部治療傷口,爾後再加入一抑制傷口癒合藥物FDI-6,進行不同組別小鼠傷口癒合時間及其傷口周邊組織免疫相關細胞激素的分析。研究發現糖尿病小鼠傷口癒合,無論添加FDI-6與否,在有幹細胞治療的第七天開始有顯著改善;免疫分析發現糖尿病組傷口周邊白細胞介素-6濃度較其他兩組為高、FDI-6組傷口周邊血管內皮生長因子濃度較其他兩組為低;而在傷口周邊巨噬細胞亞型分布方面,糖尿病組M1巨噬細胞較多、M2巨噬細胞較少,幹細胞組則是M1巨噬細胞較少、M2巨噬細胞較多。本研究結果案是人體脂肪幹細胞可以有效促進糖尿病小鼠傷口癒合,其作用機轉可減少傷口周邊白細胞介素-6濃度、改善巨噬細胞亞型的轉換,且不受FDI-6藥物之影響。

    Rapid increase of prevalence of diabetes mellitus (DM) and diabetic wound causing health and economic burdens has become an important issue not only in Taiwan but also worldwide. The clinical difficulties lie in unsatisfactory outcome with slow wound healing under traditional wound care. The pathophysiology of diabetic wound healing is associated with chronic inflammation and macrophage transition. Newly-developed stem cell therapy is a promising biological treatment modality which targets the modulation of microenvironment and inflammatory status of the wounds. Among stem cells, human adipose-derived stem cells (ADSCs) have the advantages of easy access and with well-documented pluripotency. In this study, we first establish diabetic wound healing models in mice and further give stem cell therapy using human ADSCs as the local treatment. Also, we add FDI-6 as a wound healing suppressor. The dynamic wound healing patterns show better wound healing 7 days after ADSCs treatment, whether with FDI-6 or not. The inflammation cytokine analysis presents higher amount of IL-6 in DM group and lower level of vascular endothelial growth factor (VEGF) in FDI-6 group. M2 macrophage polarization is also noted in ADSCs group. This indicates that ADSCs can facilitate diabetic mice wound healing via decreasing local IL-6 concentration and then promoting macrophage transition. The effect is not influenced by FDI-6.

    學位考試合格證明 I 中文摘要 II English Abstract III Acknowledgement IV Table of contents V List of figures VII Abbreviations VIII Introduction 1. Diabetes mellitus and diabetic foot ulcers 1 2. Chronic inflammation of diabetic foot ulcers 2 3. Adipose derived stem cells and wound healing 2 4. Interleukin-6 and wound healing 3 5. Forkhead box M1 and wound healing 4 Hypothesis and specific aims 5 Materials and methods 1. Diabetic mice wound healing model 6 2. Human adipose derived stem cell 7 3. Animal grouping 8 4. Evaluation of immunomodulatory effects 8 5. Statistics analysis 9 Results 1. Human adipose derived stem cells 10 2. Establishment of diabetic mice wound healing model 10 3. Effects on wound healing 10 4. Survival of human adipose derived stem cell 11 5. Expression of inflammatory cytokine 11 6. Phenotypes of macrophage 11 Discussion 12 Conclusion 15 Future works 15 References 16 Appendix 19

    1. World Health, O., Classification of diabetes mellitus. 2019, Geneva: World Health Organization.
    2. Williams, R., et al., IDF Atlas 9th Edition 2019. 2019.
    3. Cho, N.H., et al., IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract, 2018. 138: p. 271-281.
    4. Tai, C.H., et al., Prevalence and Medical Resource of Patients with Diabetic Foot Ulcer: A Nationwide Population-Based Retrospective Cohort Study for 2001-2015 in Taiwan. Int J Environ Res Public Health, 2021. 18(4): p. 1891.
    5. Armstrong, D.G., A.J.M. Boulton, and S.A. Bus, Diabetic Foot Ulcers and Their Recurrence. N Engl J Med, 2017. 376(24): p. 2367-2375.
    6. Economic costs of diabetes in the U.S. in 2012. Diabetes Care, 2013. 36(4): p. 1033-46.
    7. Krzyszczyk, P., et al., The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes. Front Physiol, 2018. 9: p. 419.
    8. Hesketh, M., et al., Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing. Int J Mol Sci, 2017. 18(7): p. 1545.
    9. Sindrilaru, A., et al., An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest, 2011. 121(3): p. 985-97.
    10. Patel, S., A. Maheshwari, and A. Chandra, Biomarkers for wound healing and their evaluation. J Wound Care, 2016. 25(1): p. 46-55.
    11. Hassanshahi, A., et al., Adipose-derived stem cells for wound healing. J Cell Physiol, 2019. 234(6): p. 7903-7914.
    12. Ebrahimian, T.G., et al., Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol, 2009. 29(4): p. 503-10.
    13. Zomer, H.D., et al., Mesenchymal stromal cells from dermal and adipose tissues induce macrophage polarization to a pro-repair phenotype and improve skin wound healing. Cytotherapy, 2020. 22(5): p. 247-260.
    14. Yang, R., et al., IL-6 promotes the differentiation of a subset of naive CD8+ T cells into IL-21-producing B helper CD8+ T cells. J Exp Med, 2016. 213(11): p. 2281-2291.
    15. Bosurgi, L., et al., Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science, 2017. 356(6342): p. 1072-1076.
    16. Rose-John, S., IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci, 2012. 8(9): p. 1237-47.
    17. Martinez, F.O. and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep, 2014. 6: p. 13.
    18. Nishikai-Yan Shen, T., et al., Interleukin-6 stimulates Akt and p38 MAPK phosphorylation and fibroblast migration in non-diabetic but not diabetic mice. PLoS One, 2017. 12(5): p. e0178232.
    19. Nakamura, M., et al., Correlation between high blood IL-6 level, hyperglycemia, and glucose control in septic patients. Crit Care, 2012. 16(2): p. R58.
    20. Lee, E.G., et al., Interleukin 6 Function in the Skin and Isolated Keratinocytes Is Modulated by Hyperglycemia. J Immunol Res, 2019. 2019: p. 5087847.
    21. Secor, P.R., et al., Staphylococcus aureus Biofilm and Planktonic cultures differentially impact gene expression, mapk phosphorylation, and cytokine production in human keratinocytes. BMC Microbiol, 2011. 11: p. 143.
    22. Wierstra, I., The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res, 2013. 118: p. 97-398.
    23. Sawaya, A.P., et al., Deregulated immune cell recruitment orchestrated by FOXM1 impairs human diabetic wound healing. Nat Commun, 2020. 11(1): p. 4678.
    24. Yang, Y., et al., FOXM1 accelerates wound healing in diabetic foot ulcer by inducing M2 macrophage polarization through a mechanism involving SEMA3C/NRP2/Hedgehog signaling. Diabetes Res Clin Pract, 2022. 184: p. 109121.
    25. Furman, B.L., Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr Protoc Pharmacol, 2015. 70: p. 5.47.1-5.47.20.
    26. Galiano, R.D., et al., Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen, 2004. 12(4): p. 485-92.
    27. Maharlooei, M.K., et al., Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats. Diabetes Res Clin Pract, 2011. 93(2): p. 228-234.
    28. Rodriguez, J., et al., Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem Cell Res Ther, 2015. 6: p. 241.
    29. Kim, H., M.R. Hyun, and S.W. Kim, The Effect of Adipose-Derived Stem Cells on Wound Healing: Comparison of Methods of Application. Stem Cells Int, 2019. 2019: p. 2745640.
    30. Siqueira, M.F., et al., Impaired wound healing in mouse models of diabetes is mediated by TNF-alpha dysregulation and associated with enhanced activation of forkhead box O1 (FOXO1). Diabetologia, 2010. 53(2): p. 378-88.
    31. Dai, J., et al., IL-1β Impaired Diabetic Wound Healing by Regulating MMP-2 and MMP-9 through the p38 Pathway. Mediators Inflamm, 2021. 2021: p. 6645766.
    32. Okonkwo, U.A., et al., Compromised angiogenesis and vascular Integrity in impaired diabetic wound healing. PLoS One, 2020. 15(4): p. e0231962.
    33. Lan, C., et al., Forkhead Domain Inhibitor-6 Suppresses Corneal Neovascularization and Subsequent Fibrosis After Alkali Burn in Rats. Invest Ophthalmol Vis Sci, 2022. 63(4): p. 14.
    34. Zhang, Q.Z., et al., Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells, 2010. 28(10): p. 1856-68.
    35. He, X., et al., MSC-Derived Exosome Promotes M2 Polarization and Enhances
    Cutaneous Wound Healing. Stem Cells Int, 2019. 2019: p. 7132708.

    下載圖示 校內:2025-08-24公開
    校外:2025-08-24公開
    QR CODE