簡易檢索 / 詳目顯示

研究生: 陳錦裕
Chen, Chin-Yu
論文名稱: 新型液晶面板應用於投影機及太陽能電池之研究
A study on novel TN-LC cell for projection display and solar cell applications
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 88
中文關鍵詞: 金屬偏光板液晶顯示器太陽能電池
外文關鍵詞: Wire-grid polarizer (WGP), Sub-wavelength grating (SWG), Liquid crystal (LC), Display, Solar cell, Building integrated photovoltaic (BIPV)
相關次數: 點閱:159下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出新型扭轉液晶面板,主要以上、下二片正交金屬偏光板注入液晶,金屬偏光板除具偏光功能外,兼具配向及透明電極功能。惟金屬偏光板微溝槽結構雖具配向功能,然因未具預傾角而造成多域現象,可將液晶多次退火或掺入旋光液使成單域狀態。另鋁金屬偏光板表面電阻低於一般氧化錫銦透明電極,其柵狀結構之半透光狀態,極適合作為透明電極。同時,鋁金屬偏光板亦比塑膠偏光板耐高溫及抗紫外光等優點。

    新型液晶面板與傳統液晶面板實驗比較結果臨界電壓、飽和電壓、反應時間幾乎相同,實驗驗證金屬偏光板同時具備偏光分光、配向及透明電極三項功能。由於金屬偏光板穿透其一偏光及反射另一偏光之偏光分光特性,本論文以投影顯示器系統及半透光太陽能電池系統二案例驗證新型液晶面板除具顯示器調光功能外,更可反射光再利用增加效能。

    本論文提出之新型液晶面板可廣泛應用於液晶投影顯示器及半透光太陽能電池等調光及反射光再利用系統,金屬偏光板兼具偏光、配向及透明電極等多重功能,有關特性也與傳統液晶面板進行實驗分析比較。

    In this study, a novel twist nematic (TN) liquid crystal (LC) cell that TN-LCs were sandwiched between two cross embedded wire-grid polarizers (WGPs) as alignment and electrode. In the proposed device, the WGPs replaced not only the sheet polarizers in a conventional TN-LC cell, but also the front and rear alignment layers and transparent electrodes. It was found that the structure of WGP microgroove was suitable for alignment; however, the novel TN-LC cell appeared multi-domain phenomenon due to no apparent pre-tilt angle on two WGPs. The multi-domain could be solved by the annealing method and chiral material blended with TN-LC for twisting LC in the same direction. In addition, the surface resistance of the aluminum WGP was two orders lower than the indium-tin-oxide (ITO) glass substrates that it was suitable for electric conductivity and transparent electrode. Also, metallic WGPs exhibited a higher heat resistance characteristic and more durable in ultraviolet (UV) ray environment than plastic sheet polarizers for robust.

    As a result, the threshold voltages, the saturation voltages and the response time of the novel TN-LC cell were almost substantially identical to the conventional TN-LC cell. These WGPs performed a polarization beam splitter (PBS) function, i.e. they transmitted one polarized component of the incident light and reflected the other. The proposed device incorporating WGPs exhibited not only adjustable transmitting component but also recycling reflective component. Two examples, LCD projection display and translucent a-Si:H solar cell applications, in recycling the reflective light from the WGP of the novel TN-LC cell were developed in this study.

    In this study, a novel TN-LC cell was developed for LCD projector and translucent a-Si:H solar cell applications, in which two cross WGPs were used to replace not only the polarizer sheets in a conventional TN-LC cell, but also the front and rear alignment layers and transparent electrodes. The electro-optical characteristics of the novel TN-LC cells and their applications were analyzed experimentally and were compared with those of a conventional TN-LC cell.

    中文摘要 I Abstract II 致謝 IV List of Figures IX List of Tables XIII Definition of Symbols XIV Charpter 1 Introduction 1 Charpter 2 Principle and simulated results on WGPs 5 2.1 Principle of WGPs 5 2.2 Simulation on the Moxtek WGP 8 2.3 Simulation on various grating period 12 2.4 Simulation on various grating thicknesses 16 2.5 Summary 20 Charpter 3 New design on TN-LC cells with embedded WGPs 22 3.1 Introduction on conventional TN-LC cells 22 3.1.1 Sheet polarizers 22 3.1.2 Transparent electrodes 23 3.1.3 Alignment layers 24 3.1.4 Refractive index of LCs 24 3.1.5 Operational principle of TN-LC cells 27 3.1.6 Transmission properties of NW/O mode TN-LC cell 29 3.1.7 Gooch-Tarry minimum condition 31 3.2 New design on TN-LC cells with embedded WGPs 32 3.2.1 Replacement of sheet polarizers with WGPs 33 3.2.2 Replacement of ITO electrodes with WGPs 34 3.2.3 Replacement of PI alignment layers with WGPs 35 3.2.4 Chiral material 35 3.3 Fabrication on TN-LC cells 37 3.3.1 Fabrication on conventional TN-LC cells 37 3.3.2 Fabrication on novel TN-LC cells 39 3.4 Opto-electric characteristics of TN-LC cells 40 3.5 Optical characteristics of TN-LC cells 43 3.6 Summary 46 Charpter 4 New design on LCD projectors with novel TN-LC cells 48 4.1 Introduction on LCD projectors 48 4.2 New design on LCD projectors with novel TN-LC cells 50 4.3 Transmittance of LCD projectors 51 4.4 Summary 55 Charpter 5 New design on a-Si:H solar cells with novel TN-LC cells 57 5.1 Introduction on a-Si:H solar cells 57 5.2 New design on a-Si:H solar cells with novel TN-LC cells 58 5.3 Principle of a-Si:H solar cells 61 5.3.1 Simulation on a-Si:H solar cell with transparent back electrode 65 5.3.2 Simulation on a-Si:H solar cell with metal back reflector 68 5.3.3 Simulation on opto-electric characteristics of a-Si:H solar cells 71 5.4 Fabrication of a-Si:H solar cell 73 5.5 Transmittance of a-Si:H solar cell with TN-LC cell 73 5.6 Electrical characteristics of a-Si:H solar cell with TN-LC cell 75 5.7 Summary 80 Charpter 6 Conclusions and Future Works 81 6.1 Conclusions on the novel TN-LC cell with embedded WGPs 81 6.1.1 Conclusions on LCD projector with the novel TN-LC cell 82 6.1.2 Conclusions on a-Si:H solar cell with the novel TN-LC cell 82 6.2 Future Works 83 References 84 Autobiography 88

    Berreman, D. W., “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28, 1683-1686 (1972).

    Bryan-Brown, G. P. and Sage, I. C., “Photoinduced ordering and alignment properties of polyvinylcinnamates,” Liq. Cryst. 20, 825-829 (1996).

    Chen, C. Y. and Lo, Y. L., “Feasibility study on twisted nematic liquid-crystal cell with two cross-embedded wire-grid polarizers as alignment and electrode for projection displays,” Appl. Opt. 48, 6558-6566 (2009a).

    Chen, C. Y. and Lo, Y. L., “Integration of a-Si:H solar cell with proposed twist nematic liquid crystal cell for adjustable brightness and enhanced power characteristics,” Sol. Energy Mater. Sol. Cells 93, 1268–1275 (2009b).

    Chien, K. W. and Shieh, H. P. D., “Design and fabrication of an integrated polarized light guide for liquid-crystal-display illumination,” Appl. Opt. 43, 1830-1834 (2004).

    Chiou, D. R., Yeh, K. Y., and Chen, L. J., “Adjustable pretilt angle of nematic 4-n-pentyl-4-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces,” Appl. Phys. Lett. 88, 133123-133125 (2006).

    Chopra, K. L. and Das, S. R., Thin film solar cells, Plenum Press, New York, 1983.

    Darmon, D., McNeil J. R., and Handschy M. A., "LED-Illuminated pico projector architectures," SID Symposium Digest 39, 1070-1073 (2008).

    Ekinci, Y., Solak, H. H., David, C., and Sigg, H., “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14, 2323-2334 (2006).

    Fung, Y. Y. and Yang, H., “Study on thermal performance of semi-transparent building-integrated photovoltaic glazings,” Energ. Buildings 40, 341–350 (2008).

    Ge, Z., Wu, T. X., and Wu, S. T., "Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer,” Appl. Phys. Lett. 92, 051109-1-051109-3 (2008a).

    Ge, Z. and Wu, S. T., “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93, 121104-1-121104-1 (2008b).

    Grann, E. B., Moharam, M. G., and Pommet D. A., “Artificial uniaxial and biaxial dielectrics with use of two-dimensional sub-wavelength binary gratings,” J. Opt. Soc. Am. A 11, 2695 (1994).

    Gwag, J., Lee, S., Ho-Park, K., Park, W., Han, K. Y., Yoon, T. H., Kim, J., Han, K. Y., Yoon, T. H., and Kim, J., “High pretilt angle measurement by extended crystal rotation method”, Mol. Cryst. Liq. Cryst. 412, 331-337 (2004).

    Hecht, E., Optics, Addison Wesley, San Francisco, 2002.

    Klug, U., Boyle, M., Friederich, F., Kling, R., and Ostendorf, A., “Laser beam shaping for micromaterial processing using a liquid crystal display,” Proc. SPIE 6882, 688207-1-688207-8 (2008).

    Ko, S. W., Huang, S. H., Fuh, A. Y. G., and Lin, T. H., “Measurement of helical twisting power based on axially symmetrical photo-aligned dye-doped liquid crystal film,” Opt. Express 17, 15926-15931 (2009).

    Lee, M. H. J. and Collier, R. J., “Sheet Resistance Measurement of Thin Metallic Films and Stripes at Both 130 GHz and DC,” IEEE Trans. Instrum. Meas. 54, 2412-2415 (2005).

    Lin, Y. F., Tsou, M. C., and Pan, R. P., “Alignment of liquid crystals by ion etched grooved glass surfaces,” Chin. J. Phys. 43, 1066-1073 (2005).

    Lin, S. S. and Lee, Y. D., “Orientational microgrooves generated by plasma beam irradiation at surface of polymer films to align liquid crystals,” Jpn. J. Appl. Phys. 45, L708–L710 (2006).

    Lu, X., Lu, Q., Zhu, Z., Yin, J., and Wang, Z., “Liquid crystal alignment on periodic microstructure induced by single-beam 532 nm polarized laser illumination on poly (urethane-imide) film,” Chem. Phys. Lett. 377, 433-438 (2003a).

    Lu, X., Lu, Q., and Zhu, Z., “Alignment mechanism of a nematic liquid crystal on a pre-rubbed polyimide film with laser-induced periodic surface structure,” Liq. Cryst. 30, 985-990 (2003b).

    Murat, H., Smet, H. D., and Cuypers, D., “Compact LED projector with tapered light pipes for moderate light output applications,” Displays 27, 117-123 (2006).

    Newsome, C. J., O'Neill, M., Farley R. J., and Bryan-Brown G. P., “Laser etched gratings on polymer layers for alignment of liquid crystals,” Appl. Phys. Lett. 72, 2078-2080 (1998).

    Pedrotti, F. L. and Pedrotti L. S., Introduction to Optics, Prentice-Hall, New Jersey, 1993.

    Pentico, C., Gardner, E., Hansen, D., and Perkins, R., “New, High Performance, Durable Polarizers for Projection Displays,” SID Symposium Digest 32, 1287-1289 (2001).

    Poortmans, J. and Arkhipov, V., Thin film solar cells: fabrication, characterization and applications, John Wiley & Sons Ltd., England, 2006.

    Schnabel, B., Kley, E. B., and Wyrowski, F., “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).

    Sergan, T., Kelly, J., and Lavrentovich, M., "Liquid crystalline device with reflective wire grid polarizer," Mol. Cryst. Liq. Cryst. 413, 537–544 (2004).

    Singh, J. and Stulik, P., “Optical modelling of a single-junction p-i-n type and tandem structure amorphous silicon solar cells with perfect current matching,” Sol. Energy Mater. Sol. Cells 46, 271-288 (1997).

    Sinzinger, S. and Jahns, J., Microoptics, Wiley-Vch, New York, 1999.

    Soares, L. L. and Cescato, L., “Metallized photoresist grating as a polarizing beam splitter,” Appl. Opt. 40, 5906–5910 (2001).

    Takahashi, K. and Konagai, M., Amorphous silicon solar cells, John Wiley & Sons Inc., New York, 1986.

    Takeoka, A., Kouzumam S., Tanaka, H., Inoue, H., Murata, K., Morizane, M., Nakamura, N., Nishiwaki, H., Ohnishi, M., Nakano, S., and Kuwano, Y., “Development and application of see-through a-Si solar cells,” Sol. Energy Mater. Sol. Cells 29, 243-252 (1993).

    Tamada, H., Doumuki, T., Yamaguchi, T., and Matsumoto, S., “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-µm-wavelength band,” Opt. Lett. 22, 419-421 (1997).

    Wu, S. T. and Yang, D. K., Reflective liquid crystal displays, John Wiley & Sons Inc., England, 2002.

    Yeh, P. and Gu, C., Optics of Liquid Crystal Displays, John Wiley & Sons Inc., New York, 1999.

    Yi, D., Yan, Y., Liu, H., Lu, S., and Jin, G., “Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain,” Opt. Lett. 29, 754-756 (2004).

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE