簡易檢索 / 詳目顯示

研究生: 方冠智
Fang, Kuan-Chih
論文名稱: 札卡洛夫的區域非良態解及其能量收斂
LOCAL ILL-POSEDNESS AND THE ENERGY CONVERGENCE OF ZAKHAROV SYSTEM
指導教授: 方永富
Fang, Yung-Fu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 31
中文關鍵詞: 札卡洛夫系統薛丁格Strichartz估計
外文關鍵詞: Zakharov system, Schrodinger, Strichartz estimate
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇碩士論文中,我們考慮一維古典札卡洛夫系統。我們探討他的區域非良態解,同時也探討三維度古典札卡洛夫系統的能量收斂性質。我們查詢了Ginibre, Tsutsumi, Velo的工作並研讀了Holmer的論文並整理細節。而能量收斂到薛丁格方程的部分我們讀了Masmoudi and Nakanishi的論文。我們亦整理了他們的細節並呈現在碩士論文中。

    In this thesis, we consider the classical Zakharov system. We study the illposedness of the system in 1D and the adiabatic limit at the energy level of the system in 3D. We investigate the work of Ginibre, Tsutsumi, Velo [7] and of Holmer [8] for the ill-posedness problem of the system.
    We elaborate their works in details. For the energy convergence of the Zakharov system to the cubic nonlinear Schrodinger equation, we study the work of Masmoudi and Nakanishi [10]. We also elaborate their work in details.

    1.Introduction p1 2.Notations and Tools p4 3.Local Wellposedness p10 4.Norm Inflation p11 5.Soliton Solution p15 6.Phase Decoherence p16 7.Data-to-Solution Map Not C^2 p23 8.Zakharov to Cubic Nonlinear Schrodinger p25 9.References p31

    [1] Robert A. Adams John J. F. Fournier, Sobolev Spaces, second edition
    [2] J. Bourgain and J. Colliander, On wellposedness of the Zakharov system, Internat. Math. Res.
    Notices (1996), no. 11, 515546. MR MR1405972(97h:35206)
    [3] Christ-Colliander-Tao, Ill-posedness for nonlinear Schrodinger and wave equations, arxiv.org
    preprint math.AP/0311048 (2003).
    [4] Lawrence C. Evans, Partial Di erential Equations, American Mathematical Society, 2010
    [5] Yung-Fu Fang, Hsi-Wei Shih, and Kuan-Hsiang Wang, Local Well-Posedness for the Quantum Za-
    kharov System in One Spacial Dimension. To appear in Journal of Hyperbolic Di erential Equations.
    [6] A. Eduardo Gatto1, Product Rule and Chain Rule Estimates for Fractional Derivatives on Spaces
    that Satisfy the Doubling Condition, Journal of Functional Analysis 188, 2737 (2002)
    [7] J. Ginibre, Y. Tsutsumi, and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct.
    Anal. 151 (1997), no. 2, 384436. MR MR1491547(2000c:35220)
    [8] Justin Holmer, Local ill-posedness of the 1D Zakharov system , Electron. J. Di erential Equations
    (2007), No. 24, 22. MR 2299578 (2007k:35465).
    [9] Guo Bo-Lin, Gan Zai-Hui, Zhang Jing-Jun, Zakharov Equation And The Soliton Solution, Beijingsciencepress,
    2011
    [10] Nader Masmoudi,Kenji Nakanishi, Energy convergence for singular limits of Zakharov type sys-
    tems, Invent. math. 172, 535583 (2008) DOI: 10.1007/s00222-008-0110-5
    [11] Robert McOwen, Partial Di erential Equations: Methods and Applications, Pearson Education,
    2008
    [12] Halsey Royden, Patrick Fitzpatrick, Real Anlysis, Fourth Editio
    [13] Tosinobu Muramatsu, On Imbedding Theorems for Besov Spaces of Functions De ned in General
    Regions, Publ. RIMS, Kyoto Univ.7 (1971/72), 261-285
    31

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE