| 研究生: |
洪碩延 Hong, Shou-Yan |
|---|---|
| 論文名稱: |
具標靶性之環糊精包覆磁性奈米顆粒之鑑定與其熱效應及裝載辣椒鹼之探討 Identification and preparation of targeted cyclodextrin magnetic nanoparticles for thermal effect and the investigation on the loading of capsaicin |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 磁性奈米粒子 、β-環狀糊精 、亞麻油酸 、藥物釋放 |
| 外文關鍵詞: | magnetic nanoparticle, β- cyclodextrin, linoleic acid, drug release |
| 相關次數: | 點閱:89 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磁性奈米材料相關的研究已廣泛地應用於生物醫學上。由於其超順磁特性及低生物毒性,在外加磁場下,可作為體內傳遞藥物的載體,並因其熱效應,能夠有效地抑制或除去癌細胞,更以標靶癌細胞的方式,可使藥物及熱治療直接對位到癌細胞。
本研究是以水相共沉澱法製備磁性奈米粒子,在其外層包覆β-環糊精 (β-cyclodextrin, β-CD) 及亞麻油酸 (linoleic acid),以探討奈米磁球的熱效應;並以環糊精疏水性的中孔包覆抗癌藥物,而亞麻油酸可標靶肝細胞。以XRD (X-ray diffractometer) 確認奈米磁粒為Fe3O4之晶相,而利用FT-IR (Fourier Transform Infrared Spectrophotometer) 與TGA (Termogravimetric Analysis) 鑑定β-CD及亞麻油酸已修飾於其上,並以TEM (Transmission Electron Microscope) 影像分析估算Fe3O4、Fe3O4@β-CD及Fe3O4@β-CD-LA粒子之平均微晶尺寸,分別為8.87 4.43 nm、9.97 3.86 nm與11.28 1.52 nm。由磁性分析之磁滯曲線可以得知Fe3O4、Fe3O4@β-CD及Fe3O4@β-CD-LA的飽和磁化量分別為84.51 emu/g、68.24 emu/g與27.89 emu/g。繼之將奈米磁球進行滅菌,探討滅菌後對組織細胞的影響。已有文獻指出capsaicin對癌細胞有明顯的抑制效果,特別是前列腺癌細胞,因此也進行修飾後的奈米磁球對包覆capsaicin以及釋放的探討。
奈米裸磁粒在施加高頻磁場下,於10分鐘內可達90oC,在50分鐘內可達100 oC;而經由β-CD包覆後,則10分鐘內可達72oC;而經由β-CD與亞麻油酸修飾後則在10分鐘內可達66oC,顯示經包覆後的奈米磁粒,其熱效應明顯下降,但還是具有良好之效果足以進行對腫瘤細胞之熱治療。而經過滅菌後的奈米磁性粒子於10分鐘高頻磁場下分別可達94 oC (Fe3O4),68 oC (Fe3O4@β-CD),以及64 oC (Fe3O4@β-CD-LA),顯示滅菌後依然具有良好熱治療效果。
The research of magnetic nanoparticles has been extensively applied to biologically medical technology for several years. The nanoparticles can be used as a drug carrier due to their size-dependent superparamagnetism and low cytotoxicity. Additionally, their hyperthermia anticancer treatment can depress or kill the cancer cells. And the use of targeting technique makes the drug and hyperthermia treatment directly affects the cancer cells.
In this study, the magnetic nanoparticles were synthesized by co-precipitation. The surface of nanoparticles was further modified with β-cyclodextrin and linoleic acid. Cyclodextrin, known to be a good host for the inclusion of guest molecule. Linoleic acid can be used to target hepatocytes. The thermal effect of the magnetic nanoparticles under applied magnetic field was also investigated. We used XRD to confirm the Fe3O4 structure of magnetic nanoparticles, and the modification by β-CD and linoleic acid was confirmed by TGA and FT-IR. The size of Fe3O4、Fe3O4@β-CD and Fe3O4@β-CD-LA were estimated to be 8.87 4.43 nm、9.97 3.86 nm and 11.28 1.52 nm, respectively, which were observed and calculated by TEM. SQUID results indicated that saturation magnetization of Fe3O4 、Fe3O4@β-CD and Fe3O4@β-CD-LA were 84.51 emu/g 、68.24 emu/g and 27.89 emu/g, respectively. Then we proceed to sterilization by autoclave and investigate the influence on tissue cells. Some researches have showed that capsaicin can depress the cancer cells, especially prostate cancer cells. So we also investigated the loading and releasing efficiency of capsaicin.
Under applied magnetic field, temperature of bare magnetic nanoparticles could increase up to 90 oC in 10 min and 100 oC in 50 min. With the modification of the nanoparticles with β-CD, the temperature could increase to 72 oC in 10 min. And with the modification of the nanoparticles with β-CD-LA, the temperature could increase to 66 oC in 10 min. The thermal effect of magnetic nanoparticles with modification could remarkably decrease, but they still have excellent hyperthermia effect toward cancer cells.
1. R. Kubo, Electrical properties of metallic fine particles I, Journal of the Physical Society of Japan, 17, 975-986, 1962
2. C.F. Lin, E.Z. Linag, S.M. Shih ,W.F. Su, Significance of surface properties of CdS nanoparticles, The Japan Society of Applied Physics, 42, 610-612, 2003
3. 陳奕瀚,以離子型高分子製備核殼型與中空型奈米磁性複合微粒之研究,南台科 技大學化學工程研究所碩士論文
4. Y. Ni, X. Ge, Z. Zhang, Q. Ye, Fabrication and characterization of the plate-shaped γ-Fe2O3 nanocrystals, Chemistry of Materials, 14, 1048-1052, 2002
5. J. Hong, A. Vilenkin, S. Winitzki, Particle creation in a tunneling universe, Physical Review D, 68, 023520 (1)-023520 (10), 2003
6. C. Yee, G. Kataby, A. Ulman, T. Prozorov, H. White, A. King, M. Rafailovich, J. Sokolov, A. Gedanken, Self-assembled monolayers of akanesulfonic and phosphonic acids on amorphous iron oxide nanoparticles, Langmuir,15, 7111-7115, 1999
7. 張立德,牟季美著,奈米材料與奈米結構,2001
8. M. Babincova, P. Babinec, C. Bergemann, High-gradient magnetic capture of ferrofluids: implications for drug targeting and tumor immobilization, Z Naturforsch (Sect C), 56, 909-911, 2001
9. Y.X. Wang, S.M. Hussain, G.P. Krestin, Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging, European Radiology, 11, 2319-2331, 2001
10. B. Bonnemain, Superparamagnetic agents in magnetic resonance imaging : physiochemical characteristics and clinical applications, Journal of Drug Targeting, 6, 167-174, 1998
11. L. Diandra, P. Leslie, R.D. Rieke, Magnetic properties of nanostructured materials, Chemistry of Materials, 8, 1770-1783, 1996
12. C.S. Lee, H. Lee, R.M. Westervelt, Microelectromagnets for the control of magnetic nanoparticles, Applied Physical Letters, 79, 3308-3310, 2001
13. A.K. Gupta, S. Wells, Surface modified superparamagnetic nanoparticles for drug delivery: preparation, characterization and cytotoxicity studies, IEEE Transactions on Nanobioscience, 3, 66-73, 2004
14. G.W. Reimers, S.E. Khalafalla, Preparing magnetic fluids by a peptizing method, US Bureau Mines Tech Rep, 59, 1-11, 1972
15. A. K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26, 3995-4021, 2005
16. L.C. Varanda, M. Jafelicci, Structural and magnetic transformation of monodispersed iron oxide particles in a reducing atmosphere, Journal of Applied Physics, 92, 2079-2085, 2002
17. C.L. Lin, C.F. Lee, W.Y. Chiu, Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid, Journal of Colloid and Interface Science, 291, 411-420, 2005
18. S. Sun, Z. Hao, Size-controlled synthesis of magnetite nanoparticles, Journal of The American Chemical Society, 124, 8204-8205, 2002
19. S. Sun, Z. Hao, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles, Journal of The American Chemical Society, 126, 273-279, 2004
20. K. Woo, J. Hong, S. Choi, H.W. Lee, J.P. Ahn, C.S. Kim, S.W. Lee, Easy synthesis and magnetic properties of iron oxide nanoparticles, Chemistry of Materials, 16, 2814-2818, 2004
21. D. Chen, M. Jiang, N. Li, H. Gu, Q. Xu, J. Ge, X. Xia, J. Lu, Modification of magnetic silica/iron oxide nanocomposites with fluorescentpolymethacrylic acid for cancer targeting and drug delivery, Journal of Materials Chemistry, 20, 6422-6429, 2010
22. R. Kotitz, W. Weitschies, L. Trahms, W. Brewer, W. Semmler, Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles, Journal of Magnetism and Magnetic Materials, 194, 62-68, 1999
23. O. Olsvik, T. Popovic, E. Skjerve, K.S. Cudjoe, E. Hornes, J. Ugelstad, M. Uhlen, Magnetic separation techniques in diagnostic microbiology, Clinical Microbiology Reviews, 7, 43-54, 1994
24. R. Handgretinger, P. Lang, M. Schumm, G. Taylor, S. Neu, E. Koscielnak, D. Niethammer, T. Klingebiel, Isolation and transplantation of autologous peripheral CD34+progenitor cells highly purified by magnetic-activated cell sorting, Bone Marrow Transplant, 21, 987-996, 1998
25. A.K. Gupta, A.G. Curtis, Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors, Biomaterials, 25, 3029-3040, 2004
26. A.K. Gupta, C. Berry, M. Gupta, A. Curtis, Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis, IEEE Transactions on Nanobioscience, 2, 256-261, 2003
27. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26, 3995-4021, 2005
28. W.M. Jeff, T. Douglas, B. Witwer, S.C. Zhang, E. Strable, B.K. Lewis, H. Zywicke, B. Miller, P. Gelderen, B.M. Moskowitz, I.D. Duncan, J.A. Frank, Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells, Nature Biotechnology, 19, 1141-1147, 2001
29. B. Koppolu, M. Rahimi, S. Nattama, A. Wadajkar, K.T. Nguyen, Development of multiple-layer polymeric particles for targeted and controlled drug delivery, Nanomedicine: Nanotechnology, Biology, and Medicine, 6, 355-361, 2010
30. J. Chatterjee, Y. Haik, C.J. Chen, Size dependent magnetic properties of iron oxide nanoparticles, Journal of Magnetism and Magnetic Materials, 257, 113-118, 2003
31. S.E. Pratsinis, S. Vemury, Particle formation in gases — a review, Powder Technology, 88, 267-273, 1996
32. M. Liong, J. Lu, M. Kovochich, T. Xia, S.G. Ruehm, A.E. Nel, F. Tamanoi, J.I. Zink, Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery, ACS Nano, 2, 889-896, 2008
33. P.C. Wu, C.H. Su, Modularly assembled magnetite nanoparticles enhance in vivo targeting for magnetic resonance cancer imaging, Bioconjugate Chemistry,19, 1972-1979, 2008
34. K.L. Ang, S. Venkatraman, R.V. Ramanujan, Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy, Materials Science and Engineering C, 27, 347-351, 2007
35. A.A. Luderer, N.F. Borrelli, J.N. Panzarino, G.R. Mansfield, D.M. Hess, J.L. Brown, E.H. Barnett, Glass-ceramic-mediated, magneticfield-induced localized hyperthermia: response of a murine mammary carcinoma, Radiation Research, 94, 190-198, 1983
36. D.C.F. Chan, D.B. Kirpotin, J.P. Bunn, Synthesis and evaluation of colloidal magnetic iron oxides for the site specific radiofrequency-induced hyperthermia of cancer, Journal of Magnetism and Magnetic Materials, 122, 374-378, 1993
37. M. Shinkai, M. Yanase, Intracellular hyperthermia for cancer using magnetite cationic liposomes, Journal of Magnetism and Magnetic Materials, 194, 176-184, 1999
38. 柯朝榮,以環糊精-磁性奈米粒子之熱效應與包覆抗癌藥 capsaicin 之探討,成功大學化學工程研究所碩士論文
39. T. Loftsson, D. Duchene, Cyclodextrins and their pharmaceutical applications, International Journal of Pharmaceutics, 329, 1-11, 2007
40. K.A. Connors, The stability of cyclodextrin complexes in solution, Chemical Reviews, 97, 1325-1357, 1997
41. E.M. Martin, Cyclodextrins and their uses: a review, Process Biochemistry, 39, 1033-1046, 2004
42. M.E. Davis, M.E. Brewster, Cyclodextrin-based pharmaceutics: past, present and future, Nature Reviews Drug Discovery, 3, 1023-1035, 2004
43. K. Uekama, F. Hirayama, T. Irie, Cyclodextrin drug carrier systems, Chem. Rev, 98, 2045-2076, 1998
44. U. Kelavkar, Y. Lin, D. Landsittel, U. Chandran, R. Dhir, The yin and yang of 15-lipoxygenase-1 and delta-desaturases: Dietary omega-6 linoleic acid metabolic pathway in prostate, Journal of Carcinogenesis, 5, 1186-1190, 2006
45. N.T. Kasaoka, M. Takahashi, K. Tanemura, H.J. Kim, T. Tange, H. Okuyama, M. Kasai, S. Ikemoto, O. Ezaki, Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice, Diabetes, 49, 1534-1542, 2000
46. M.A. Belury, K. Steczko, Conjugated linoleic acid modulates hepatic lipid composition in mice, Lipids, 32, 199-204, 1997
47. A.M. Giudetti, A.C. Beynen, A.G. Lemmens, G.V. Gnoni, M.J. Geelen, Hepatic lipid and carbohydrate metabolism in rats fed a commercial mixture of conjugated linoleic acids, European Journal of Nutrition, 44, 33-39, 2005
48. 黃美鳳,幾丁聚醣接枝半乳糖簇之材料性質及其肝靶向性研究,中央大學化學工程與材料工程研究所碩士論文
49. C.M. Lee, H.J. Jeong, S.L. Kim, E.M. Kim, D.W. Kim, S.T. Lim, K.Y. Jang, Y.Y. Jeong, J.W. Nah, M.H. Sohn, SPION-loaded chitosan–linoleic acid nanoparticles to target hepatocytes, Pharmaceutical Nanotechnology, 371, 163-169, 2009
50. X.M. Liua, S.Y. Fua, C.J. Huang, Magnetic properties of Ni ferrite nanocrystals dispersed in the silica matrixby sol–gel technique, Journal of Magnetism and Magnetic Materials , 281,234-239, 2004
51. Y. Yu, B. Che, Z. Si, L. Li, W. Chen, G. Xue, Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion, Synthetic Metals, 150, 271-277, 2005
52. O. Damink, L.H. Dijkstra, P.J. Luyn, M.J. Wachem, P.B. Van, P. Nieuwenhuis, J. Feijen, Cross-linking of dermal sheep collagen using a water-soluble carbodiimide, Biomaterials, 17, 765-773, 1996
53. A. Mori, S. Lehmann, J. O’Kelly, T. Kumagai, J.C. Desmond, M. Pervan, W.H. McBride, M. Kizaki, H.P. Koeffler, Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells, Cancer research, 66, 3222-3229, 2006
54. N. Kozukue, J.S. Han, E. Kozukue, S.J. Lee, J. Aekim, K.R. Lee, C.E. Levin, and M. Friedman, Analysis of eight capsacinoids in peppers and pepper-containing foods by high-performance liquid chromatography and liquid chromatography-mass spectrometry, Journal of Agricultural and Food Chemistry, 53, 9172-9181, 2005
校內:2027-06-01公開