研究生: |
蔡宗達 Tsai, Tzung-Da |
---|---|
論文名稱: |
有機五環素場效電晶體中遲滯特性之研究 The studies of hysteresis characteristics in pentacene-based organic field-effect transistors |
指導教授: |
郭宗枋
Guo, Tzung-Fang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 反射式紅外光譜 、遲滯效應 、氫氧基 、五環素場效電晶體 |
外文關鍵詞: | pentacene OFET, OH, hysteresis |
相關次數: | 點閱:75 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究五環素(Pentacene)有機場效電晶體的遲滯效應現象。場效電晶體元件結構採用Pentacene為主動層,以金為電極,使用Polyvinyl alcohol (PVA)為介電層來研究其遲滯效應。藉由改變介電層的水份含量,來觀察元件遲滯效應的變化。由於PVA高分子結構上的羥基(又稱氫氧基,化學式-OH),在遲滯現象中扮演相當重要的角色。本研究提出一個介電層模型說明羥基如何影響遲滯效應,並且利用反射式紅外光譜(FTIR)、電容電壓(C-V)及不同偏壓時間下的量測,來驗證羥基介電層模型。以上研究幫助更多認識遲滯效應的產生機制,經由結構設計及製程調整達成控制元件的遲滯效應,並評估有機場效電晶體遲滯效應作為記憶體元件之可行性。
This study presents on hysteresis of pentacene-based organic field effect transistors (OFET) with pentacene as active layer, gold as source-drain electrodes, and polyvinyl alcohol (PVA) as dielectrics. By reducing water solvent residual in PVA, hysteresis of OFETs were observed gradually. For the hydroxyl groups on PVA are highly polar, they influence an OFET acting with hysteresis. A dielectrics model was suggested to illustrate hydroxyl dipoles affect output characteristic of an OFET, and it was validated with Fourier-transform Infrared spectroscopy, Capacitance-voltage measurement, and transfer characteristics under different bias periods. This study provides insights of OFET hysteresis, develops device structure and fabrication approaches, and evaluates the feasibility of OFET toward memory application.
1. S. M. Sze, Physics of Semiconductor Devices (Wiley, New Jersey, 2007).
2. C. R. Kagan and P. Andry, Thin-Film Transistor (Marcel Dekker, New York, 2003).
3. M. Pope, and C. E. Swenber, Electronic Processes in Organic Crystals (Oxford University Press, New York, 1982).
4. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Hegger, H. Shirakawa, E. J. Louis, S. C. Gua and A. G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1997).
5. S. C. Lim, S. H. Kim, J. B. Koo, J. H. Lee, C. H. Ku, Y. S. Yang, and T. Zyung, Appl. Phys. Lett. 90, 173512 (2007).
6. J. B. Koo, C. H. Ku, S. C. Lim, S. H. Kim, and J. H. Lee, Appl. Phys. Lett. 90, 133503 (2007).
7. D. K. Hwang, M. S. Oh, J. M. Hwang, J. H. Kim, and S. Im, Appl. Phys. Lett. 92, 13304 (2008).
8. G. Gu, M. G. Kane, J. E. Doty, and A. H. Firester, Appl. Phys. Lett. 87, 243512 (2005).
9. G. Gu, and M. G. Kane, Appl. Phys. Lett. 92, 55305 (2008).
10. G. Gu, M. G. Kane, and S. C. Mau, Appl. Phys. Lett. 101, 14504 (2007).
11. D. W. Park, C. A. Lee, K. D. Jung, B. G. Park, H. Shin, and J. D. Lee, Appl. Phys. Lett. 89, 263507 (2006).
12. C. D. Dimitrakopoulos, and P. R. L. Malenfant, Adv. Mater. (Weinheim, Ger.) 14, 99 (2002).
13. S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, and Y. Iwasa, Appl. Phys. Lett. 82, 4581 (2003).
14. C. Waldauf, P. Schilinsky, M. Perisutti, J. Hauch, and C. J. Brabec, Adv. Mater. (Weinheim, Ger.) 15, 2084 (2003).
15. M. Chikamatsu, S. Nagamatsu, Y. Yoshida, K. Saito, K. Yase, and K. Kikuchi, Appl. Phys. Lett. 87, 203504 (2005).
16. Z. A. Bao, A. J. Lovinger, and J. Brown, J. Am. Chem. Soc. 120, 207 (1998).
17. J. Zaumseil and H. Sirringhaus, Chem. Rev. 107, 1296 (2007).
18. Brutting, Physics of Organic Semiconductors (Wiley, Weinheim, 2005).
19. N. Karl and J. Marktanner, Mol. Cryst. Liq. Cryst. 355, 149 (2001).
20. C. D. Cimitrakopoulos and D. J. Mascaro, IBM J. Res. Dev 45, 11 (2001).
21. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers 2nd (Oxford University Press, New York, 1999).
22. S. F. Nelson, Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, Appl. Phys. Lett. 72, 1854 (1998).
23. N. Karl, J. Marktanner, R. Stehle, and W. Warta, Synth. Mat. 2473, 41 (1991).
24. A. R. Brown, A. Pomp, D. M. Deleeuw, D. B. M. Klaassen, E. E. Havinga, and P. H. Kmullen, J. Appl. Phys. 79, 2136 (1996).
25. 陳石育, N型有機場效電機體之高分子閘極介電層研究, 國立成功大學光電科學與工程研究所碩士論文 (2007).
26. G. Horowitz, Adv. Mater. (Weinheim, Ger.) 10, 365 (1998).
27. D. Braga and G. Horowitz, Adv. Mater. (Weinheim, Ger.) 21, 1 (2009).
28. J. Zaumseil and H. Sirringhaus, Chem. Rev. 107, 1296 (2007).
29. J. Veres, S. Ogier, G. Lloyd, and D. Leeuw, Chem. Mat. 16, 4543 (2004).
30. M. Pope and C. E. Swenber, Electronic Processes in Organic Crystals (Oxford University Press, New York, 1982).
31. S. C. Lim, S. H. Kim, J. B. Koo, J. H. Lee, C. H. Ku, Y. S. Yang, and T. Zyung, Appl. Phys. Lett. 90, 173512 (2007).
32. C. D. Cimitrakopoulos and D. J. Mascaro, IBM J. Res. Dev 45, 11 (2001).
33. S. F. Nelson, Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, Appl. Phys. Lett. 72, 1854 (1998).
34. N. Karl, J. Marktanner, R. Stehle, and W. Warta, Synth. Mat. 2473, 41 (1991).
35. 徐偉烈, 雙載子有機場效電晶體之研究, 國立成功大學光電科學與工程研究所碩士論文 (2008).
36. H. Klagen, Organic Electronics (Wiley, Weinheim, 2006).
37. A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, Shuhong Liu, R. J. Tseng, Colin Reese, Mark E. Roberts, Y. Yang, F. Wudl, Z. Bao, Nature, 444, 913 (2006).