簡易檢索 / 詳目顯示

研究生: 韓至柔
Han, Chih-Jo
論文名稱: 利用具表面選擇性之矽烷模板製作蛋白質奈米陣列
Large-Scale Fabrication of Protein Nanoarrays Using Organosilane Nanotemplates with Surface Selectivity
指導教授: 李介仁
Li, Jie-Ren
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 91
中文關鍵詞: 蛋白質奈米陣列粒子微影術有機矽烷自組裝
外文關鍵詞: Protein nanoarrays, particle lithography, organosilane, SAMs
相關次數: 點閱:101下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於蛋白質於人體中扮演很重要的角色,為了要瞭解活體系統,對於蛋白質相互作用的機制進行釐清與探討是必要的,故蛋白質的奈米陣列能成為研究的一大助力。蛋白質奈米陣列能將大量蛋白質侷限於一個基材上且可同步進行測試,提供了一個方便快速的方法進行蛋白質的研究。
    藉由粒子微影術結合有機矽烷表面化學,製作出可以有效地使表面帶有良好選擇性的奈米有機矽烷模板。由於市售的奈米粒子具有各種不同的大小,所以粒子微影術可以有效地控制有機矽烷模板於表面上的覆蓋率,並且使表面帶有高通量的特性的優點。伴隨著第二種帶有不同官能基的有機矽烷自組裝於奈米結構之中,即被粒子所保護住的區域,進而生成了具有良好位置特異性的表面。由於後續的實驗步驟會針對官能基的部分進行反應,所以蛋白質可以精準的固定在奈米結構內,製備出符合奈米結構排列的蛋白質奈米點陣列。由於可以選用做來修飾於奈米結構內的有機矽烷種類繁多,伴隨著不同的官能基所製備出的表面能夠應用的層面也會隨之變得廣泛。

    Proteins play a very important role in the human body, in order to study the living system. It is necessary to clarify and discuss the mechanism of protein-protein interaction. The protein nanoarrays can become a useful method for understanding the interaction between proteins. Protein nanoarrays can confined a large amount of proteins on the surface, and the proteins could be test simultaneously. It provides a fast and convenient way for the study of Proteomics. By combining particle lithography with organosilane chemistry, the fabrication of organosilane nanotemplets can effectively provide the surface with high selectivity. Due to commercially available nanoparticles with different size, the particle lithography can effectively control the surface coverage of organosilane nanotemplates and the advantages of surface characteristics with high-throughput. Accompanied with second different functional groups of organosilane deposition in the nanostructure, which is protected by the particle lived in the area, the surface with good site-specificity was obtained. Because the subsequent experimental steps will specifically react with functional part of surface,
    the protein can be immobilized accurately in the nanostructure. The patterns of protein nanodots array will correspond to the pattern of organosilane nanotemplet. Due to the variety of organosilne which can be applied for the surface modification. The surface prepared by the different functional groups can be applied to a wide range of applications.

    第一章、緒論 1 一、前言 1 二、有機矽烷的自組裝層的製備與應用 6 三、原子力顯微鏡的原理與介紹 9 第二章、利用不同的有機矽烷結合粒子蝕刻技術製備出具有陣列的表面 12 一、實驗目的 12 二、實驗部分 15 2.1 實驗藥品 15 2.2 儀器裝置 16 2.3樣品製備 16 2.4實驗步驟 16 三、結果與討論 20 3.1粒子模板的種類及尺寸 20 3.2使用乙烯基有機矽烷修飾後轉化為單一的羧酸基的表面 22 3.3使用琥珀酸酐有機矽烷修飾後轉化為帶有兩個羧酸基的表面 27 3.4於一般的基材表面進行奈米結構的製備 34 四、結論 43 第三章、將具有陣列的有機矽烷表面末端官能基進行化學的修飾及轉化 44 一、實驗目的 44 二、實驗部分 45 2.1 實驗藥品 45 2.2 儀器裝置 45 2.3樣品製備 46 2.4實驗步驟 46 三、結果與討論 49 3.1官能基的修飾轉化機構 49 3.2利用金奈米粒子驗證胺基官能基的活性 53 3.3經由有機矽烷修飾後表面的型態 58 四、結論 69 第四章、帶有官能基的表面可選擇性的固定蛋白質形成蛋白質奈米陣列 70 一、前言 70 二、實驗部份 71 2.1 實驗藥品 71 2.2 儀器裝置 71 2.3樣品製備 72 2.4實驗步驟 72 三、結果與討論 74 3.1使用胺基有機矽烷修飾的表面結合戊二醛進行BSA蛋白聯偶 74 3.2使用琥珀酸酐有機矽烷修飾的表面經由EDC/NHS活化進行BSA蛋白質聯偶 79 3.3使用乙烯基有機矽烷修飾的表面經由EDC/NHS活化進行BSA蛋白聯偶 82 四、結論 89 參考資料 90

    [1] Ekblad, T.; Liedberg, B. Curr. Opin. Colloid Interface Sci. 2010, 15, 499−509.
    [2] Kim, D.-H.; Lee, H.; Lee, Y. K.; Nam, J.-M.; Levchenko, A. Adv. Mater. 2010, 22,
    4551−4566.
    [3] Lutolf, M. P.; Gilbert, P. M.; Blau, H. M. Nature 2009, 462, 433−441.
    [4] Ogaki, R.; Alexander, M.; Kingshott, P. Mater. Today 2010, 13, 22−35.
    [5] Li, J. R.; Lusker, K. L.; Yu, J. J.; Garno, J. C. ACS Nano 2009, 3, 2023–2035.
    [6] Li, J. R.; Garno, J. C. Nano Lett. 2008, 8, 1916–1922.
    [7] Brownfield, A.L.; Causey,C.P.; Mullen, T. J. J. Phys. Chem. C 2015, 119, 12455–
    12463.
    [8] Ogaki, R.; Bennetsen, D. T.; Bald, I.; Foss, M. Langmuir 2012, 28, 8594−8599.
    [9] Y. Cai, B. M. Ocko, Langmuir. 2005, 21, 9274-9279.
    [10] Tran, H.; Killops, K. L.; Campos, L. M. Soft Matter 2013, 9, 6578–6586.
    [11] Ngunjiri, J.; Stark, D.; Tian, T.; Briggman, K.; Garno, J. Anal. Bioanal. Chem.
    2013, 405, 1985–1993.
    [12] Wadu-Mesthrige, K.; Amro, N. A.; Garno, J. C.; Xu, S.; Liu, G.-y. Biophys. J.
    2001, 80, 1891-1899.
    [13] Wadu-Mesthrige, K.; Xu, S.; Amro, N. A.; Liu, G. Y. Langmuir 1999 , 15, 8580-
    8583.
    [14] Staii, C.; Wood, D. W.; Scoles, G. J. Am. Chem. Soc. 2008, 130, 640-646.
    [15] Staii, C.; Wood, D. W.; Scoles, G. Nano Lett. 2008, 8, 2503–2509.
    [16] Cse, M. A.; McLendon, G. L.; Hu, Y.; Vanderlick, T. K.; Scoles, G. Nano Lett.
    2003, 3, 425–429.
    [17] Hu, Y.; Das, A.; Hecht, M. H.; Scoles, G. Langmuir 2005, 21, 9103−9109.
    [18] Kenseth, J. R.; Harnisch, J. A.; Jones, V. W.; Porter, M. D. Langmuir 2001, 17,
    4105−4112.
    [19] Hyun, J.; Ahn, S. J.; Lee, W. K.; Chilkoti, A.; Zauscher, S. Nano Lett. 2002, 2,
    1203−1207.
    [20] Nam, J.M.; Han, S.W.; Lee, K.B.; Liu, X.; Ratner, M.A.; Mirkin, C.A. Angew.
    Chem. Int. Ed. 2004, 43, 1246-1249.
    [21] Bernard, A.; Renault, J. P.; Michel, B.; Bosshard, H. R.; Delamarche, E. Adv.
    Mater. 2000, 12, 1067-1070.
    [22] Kumar, N.; Parajuli, O.; Hahm, J.-i. J. Phys. Chem. B 2007, 111, 4581−4587.
    [23] Ulman, A. An Introduction to Ultrathin Organic Films, Academic Press, Boston,
    1991.
    [24] Ulman, A. Chem. Rev. 1996, 96, 1533-1554.
    [25] Schwartz, D. K. Annu. Rev. Phys. Chem. 2001, 52, 107-137.
    [26] Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem.
    Rev. 2005, 105, 1103-1169.
    [27] Sagiv, J. J. Am. Chem. Soc. 1980, 102, 92-98.
    [28] Nuzzo, R. G.; Allara, D. J. Am. Chem. Soc. 1983, 105, 4481-4483.
    [29] Netzer, L.; Iscovici, R.; Sagiv, J. Thin Solid Films 1983, 99, 235-241.
    [30] Netzer, L.; Iscovici, R.; Sagiv, J. Thin Solid Films 1983, 100, 67-76.
    [31] Maoz, R.; Sagiv, J. J. Colloid Interface Sci. 1984, 100, 465-496.
    [32] Gun, J.; Iscovici, R.; Sagiv, J. J. Colloid Interface Sci. 1984, 101,
    201-213.
    [33] Gun, J.; Sagiv, J. J. Colloid Interface Sci. 1986, 112, 457-472.
    [34] Cohen, S. R.; Naaman, R.; Sagiv, J. J. Phys. Chem. 1986, 90, 3054-3056.
    [35] Maoz, R.; Sagiv, J. Langmuir 1987, 3, 1034-1044.
    [36] Maoz, R.; Sagiv, J. Langmuir 1987, 3, 1045-1051.
    [37] Finklea, H. O.; Robinson, L. R.; Blackburn, A.; Richter, B.; Allara, D.; Bright, T.
    Langmuir 1986, 2, 239-244.
    [38] Stevens, M. J. Langmuir 1999, 15, 2773-2778.
    [39] Tripp, C. P.; Hair, M. L. Langmuir 1992, 8, 1120-1126.
    [40] Hair, M. L.; Tripp, C. P. Colloids Surf. A 1995, 105, 95-103.
    [41] Wang, Y. L.; Lieberman, M. Langmuir. 2003, 19, 1159-1167.
    [42] McGovern, M. E.; Kallury, K. M.; Thompson, R. M. Langmuir 1994, 10, 3607-
    3614.
    [43] Brunner, H.; Vallant, M.; Mayer, U.; Hoffmann, H. J. Colloid Interface Sci. 1999,
    212, 545-552.
    [44] Image from the homepage Wikipedia,
    https://simple.wikipedia.org/wiki/Atomic_force_microscope
    [45] Image from the homepage Bone Biology and Mechanics Lab,
    http://www.iupui.edu/~bbml/afmintro.shtml
    [46] Taylor, Z. R.; Keay, J. C.; Sanchez, E. S.; Johnson, M. B.; Schmidtke, D. W.
    Langmuir 2012, 28, 9656−9663.
    [47] Image from the homepage Thermo Fisher Scientific,
    https://www.thermofisher.com/tw/zt/home/life-science/protein-biology/protein- biology-learning-center/protein-biology-resource-library/pierce-protein-methods/carbodiimide-crosslinker-chemistry.html
    [48] Huy, T. Q.; Chung, P. V.; Thuy, N. T.; Blanco-Andujar, C.; Thanh, N. T. K.
    Faraday Discuss 2014, 175, 73-82.

    下載圖示 校內:2019-07-31公開
    校外:2019-07-31公開
    QR CODE