簡易檢索 / 詳目顯示

研究生: 王韋然
Wang, Wei-Jan
論文名稱: CEBPD 在抗藥性膀胱癌中的調控與功能探討
Investigation of CEBPD's regulation and roles in drug-resistant bladder cancers
指導教授: 王育民
Wang, Ju-Ming
共同指導教授: 張文昌
Chang, Wen-Chang
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 74
中文關鍵詞: 膀胱尿路上皮癌順鉑交互抗藥性CEBPDABCB1
外文關鍵詞: Urothelial carcinoma of urinary bladder, cisplatin, cross-resistance, CEBPD, ABCB1
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 順鉑經常與紫杉醇聯合進行合併性的化學療法,以治療膀胱尿路上皮癌。然而,如同其它類癌症治療方法所面臨的問題,交叉抗藥性使得順鉑的發展受到挑戰,阻礙其成功治療膀胱尿路上皮癌的經驗。因此,當務之急是了解順鉑所誘發的對癌症治療藥物抗藥性的根本機制,以便發展出新對策。本研究利用報導基因法和in vivo DNA 結合實驗,評估ABCB1 基因和ABCC2 基因的活化是否直接受到CEBPD 的調控。本研究
    也利用抑制蛋白表現和抗癌藥物的效果實驗,以釐清存在於膀胱尿路上皮癌細胞內的上皮細胞生長因子接受體 (EGFR) 以及訊息傳遞及轉錄因子3 (STAT3) 此二者與通過順鉑誘導CEBPD 的表現是否有關聯。最後,本研究進行動物異種移植實驗,以測試Gefitinib 和S31-201(Stat3 抑制劑)兩者在逆轉順鉑敏感性,達到殺死膀胱尿路上皮癌細胞的效果。CEBPD 持續性地表現在已接受化學療法治療的病患身上;CEBPD也在具有順鉑抗藥性的膀胱尿路上皮癌細胞產生反應。當接受順鉑治療時,所誘導的CEBPD 表現活化了ABCB1 基因和ABCC2 基因。上皮細胞生長因子接受體/訊息傳遞及轉入因子3 的活化有助於順鉑於膀胱尿路上皮癌細胞內,誘導CEBPD 表現。艾瑞莎和S31-201 明顯減少了CEBPD 表現,但增強了順鉑的敏感性、促進具有順鉑抗藥性的NTUB1/P 細胞對紫杉醇敏感性和NTUB1/P 異種移植腫瘤的敏感性。本研究結果呈現在具有順鉑抗藥性的膀胱尿路上皮癌細胞內,活化CEBPD 所伴隨的風險;同時,也提出藉由合併順鉑和艾瑞莎或S31-201 的策略,治療膀胱尿路上皮癌或具有順鉑抗藥性的膀胱尿路上皮癌。

    Urothelial carcinoma of urinary bladder (UCUB) is the fourth most common malignancy in men, and the tenth most common in women. Anticancer drug cisplatin (CDDP) is highly used in the therapy of UCUB. In addition, CDDP is frequently combination chemotherapy with paclitaxel (PTX) used in UCUB therapies. However, as well as other types of cancers, the development of CDDP cross-resistance remains a challenge problem hindering the
    successful treatment of UCUB. Therefore, elucidating the mechanisms underlying CDDP-induced anticancer drug cross-resistance to develop novel strategies is urgent. CCAAT/enhancer binding protein delta (CEBPD) is expressed at a relatively low level under normal physiological conditions and can be up-regulated by a variety of extracellular
    stimuli including IL-1β, PGE2, TNFα and stress like as starvation of serum and anticancer drugs. Actually, the function of CEBPD is more than serves as a tumor suppressor; several reports suggested that CEBPD also play an oncogenic role in certain conditions. For instance, recent study have demonstrated that CDDP could induce CEBPD-mediated
    anti-apoptosis pathway in UCUB cells. However, how CDDP induces cross-resistance with PTX through transcription regulation of genes involved in anti-apoptosis remains largely unexplored. In this study, we found that the ABCB1 and ABCC2 genes were activated by CEBPD upon CDDP treatment. The EGFR/STAT3 pathway contributed to the CDDP-induced CEBPD expression in the UCUB cells. Both Gefitinib and S3I-201 significantly decreased CEBPD expression and enhanced the sensitivity of CDDP or PTX
    of CDDP-resistant NTUB1/P cells or NTUB1/P xenograft tumors. Taken together, our results demonstrate the risk of CEBPD activation in CDDP-resistant UCUB cells and suggest a potentially therapeutic strategy for treating patients with UCUB or UCUB with CDDP-induced PTX resistance via a combination of CDDP and Gefitinib or S3I-201.

    Abstract............ I 中文摘要 ........... II 致謝 ............ III Contents ............ IV List of Figures .......... VI List of Appendices .......... IX Abbreviation List ........... X Chapter 1 Introduction ......... 1 1-1 Drug resistance in urothelial carcinoma of urinary bladder (UCUB) .. 1 1-1.1 Cisplatin (CDDP) treatment in UCUB ........ 1 1-1.2 CDDP and reactive oxygen species [6] in cancer ...... 1 1-1.3 CDDP and Paclitaxel (PTX) combination treatment in UCUB ... 2 1-1.4 CDDP and PTX cross resistance in cancer ...... 3 1-2 Epidermal growth factor receptor (EGFR) ...... 4 1-2.1 The role of EGFR in UCUB ........ 4 1-2.2 The mechanism of EGFR in drug resistance ....... 4 1-2.3 The function of EGFR inhibitor gefitinib in drug resistance ... 5 1-3 CCAAT/Enhancer binding protein delta (CEBPD) ..... 6 1-3.1 CEBPD and cancer .......... 6 1-3.2 CEBPD and drug resistance ......... 6 1-4 Multidrug resistance transporter proteins (MDR) ...... 7 1-4.1 ABC transporter in cancer .......... 7 1-4.2 The Chemotherapy substrates of ABC transporter protein .... 7 1-5 Specific aims ............. 8 Chapter 2 Materials and Methods ........ 10 2-1 Materials ............. 10 2-2 Methods ............. 10 2-2.1 Cell lines and culture conditions ........ 10 2-2.2 Cell viability and cell death assays ........ 11 2-2.3 Western blot analysis.......... 11 2-2.4 Quantitative real-time polymerase chain reaction (qRT-PCR) .. 12 2-2.5 Plasmid transfection and reporter gene assay ...... 12 2-2.6 Chromatin immunoprecipitation -PCR assay ...... 12 2-2.7 Lentiviral knockdown assay ........ 13 2-2.8 MDR pump activity assay .......... 14 2-2.9 Animal studies ............ 14 2-2.10 Statistical analysis .......... 15 Chapter 3. Results ........... 16 3-1 CEBPD is elevated in CDDP-resistant UCUB cell lines ...... 16 3-2 CDDP induces CEBPD expression in NTUB1/P cells ..... 16 3-3 CEBPD contributes to CDDP and CDDP-induced PTX cross-resistance .. 17 3-4 EGFR inhibitor Gefitinib significantly enhances CDDP sensitivity in drug-resistant UCUB cells .......... 18 3-5 Abrogating STAT3 activation inhibits CEBPD expression and enhances CDDP efficiency in CDDP-resistant UCUB .......... 19 3-6 ABCB1 and ABCC2 are the target genes of CEBPD ...... 20 3-7 ABCB1 is a target gene of CEBPD in the CDDP response ..... 20 3-8 Gefitinib and S3I-201 inhibit ABCB1 and ABCC2 transcripts and enhance CDDP and PTX drug sensitivity in CDDP-resistant NTUB1/P cells and J82 UCUB cells . 21 3-9 Gefitinib and S3I-201 enhance CDDP and PTX drug sensitivity in CDDP-resistant NTUB1/P cells and J82 UCUB cells ...... 22 3-10 Gefitinib and S3I-201 enhance CDDP sensitivity in CDDP-resistant nasopharyngeal cancer HONE1 cells .......... 23 3-11 Gefitinib and S3I-201 significantly enhance therapeutic efficacy of CDDP in CDDP-resistant UCUB ........... 23 Chapter 4 Discussion .......... 25 References ............ 31 Figures ............ 40 Appendixes ........... 72 Curriculum Vitae .......... 73 List of Figures Figure 1. The effects of cell viability and CEBPD abundance in various urothelial carcinoma of urinary bladder (UCUB) cells responding to cisplatin (CDDP). .... 40 Figure 2. CEBPD expression is responsive to cisplatin (CDDP) treatment and sustained in CDDP-resistant NTUB1/P (NTP) cells. ........ 41 Figure 3. Cisplatin (CDDP)-resistant NTUB1/P (NTP) cells are insensitive to paclitaxel (PTX) treatment. ........... 42 Figure 4. Attenuation of CEBPD in cisplatin (CDDP)-resistant NTUB1/P (NTP) cells sensitize to CDDP and paclitaxel (PTX). ........ 43 Figure 5. The effects of CEBPD on ABC transporter-mediated pump activity in cisplatin (CDDP)-resistant NTUB1/P (NTP) cells. ........ 44 Figure 6. Expression and activities of EGFR and STAT3 are increased in cisplatin (CDDP)-resistant NTUB1/P (NTP) cells. ........ 45 Figure 7. Gefitinib attenuates survival of NTUB1 (NTU) and cisplatin (CDDP)-resistant NTUB1/P (NTP) cells. ........... 46 Figure 8. Gefitinib enhances sensitization of NTUB1 (NTU) and cisplatin (CDDP)-resistant NTUB1/P (NTP) cells to CDDP. ......... 47 Figure 9. CBEPD expression is associated with STAT3 activity following EGF treatment in cisplatin (CDDP)-resistant NTUB1/P (NTP) cells. ..... 48 Figure 10. Levels of CEBPD associates with STAT3 activity in gefitinib-treated cisplatin (CDDP)-resistant NTUB1/P (NTP) cells. ........ 49 Figure 11. STAT3 inhibitor (S3I-201) inhibits EGF or cisplatin (CDDP)-activated CEBPD expression. ........... 50 Figure 12. Gefitinib and S3I-201 attenuate expression of phosphorylation of STAT3 (pY705) and CEBPD in J82 cells. .......... 51 Figure 13. Cisplatin (CDDP) enhances STAT3 binding to promoter of CEBPD gene in CDDP-resistant NTUB1/P (NTP) cells. ........ 52 Figure 14. Overexpression of CEBPD upregulates ABCB1 and ABCC2 transcription in cisplatin (CDDP)-resistant NTUB1/P (NTP) cells. ..... 53 Figure 15. ABCB1 transcripts are abundant in cisplatin (CDDP)-resistant NTUB1/P (NTP) cells. ............. 54 Figure 16. CEBPD induces ABCB1 transcription. ...... 55 Figure 17. Loss of CEBPD attenuates cisplatin (CDDP)-induced ABCB1 reporter activity. .............. 56 Figure 18. Identification of CEBPD-responsive region in 5’-flanking region and intron 1 of ABCB1 gene locus. ........... 57 Figure 19. Cisplatin (CDDP) enhances CEBPD binding to region containing putative CEBPD binding motifs at ABCB1 gene locus in CDDP-resistant NTUB1/P (NTP) cells. .............. 58 Figure 20. Overexpression of CEBPD upregulates ABCB1 transcription containing known exon 1 (NM_000927.4) in cisplatin (CDDP)-resistant NTUB1/P (NTP) cells. .. 59 Figure 21. Gefitinib and S3I-201 inhibits cisplatin (CDDP)-induced ABCC2 and ABCB1 transcription. ............ 60 Figure 22. Gefitinib and S3I-201 attenuate ABCB1 transcripts of J82 cells. .. 61 Figure 23. The effects of Gefitinib and S3I-201 on inhibition of ABCB1 transporter-mediated pump activity in cisplatin (CDDP)-resistant NTUB1/P (NTP) cells and J82 cells. ............. 62 Figure 24. Gefitinib and S3I-201 enhance cisplatin (CDDP) and paclitaxel (PTX) sensitivity in CDDP-resistant NTUB1/P (NTP) cells. ........ 63 Figure 25. Gefitinib and S3I-201 enhance cisplatin (CDDP) sensitivity in J82 cells. 64 Figure 26. Drug resistance of cisplatin (CDDP) in nasopharyngeal carcinoma HONE1/R (CDDP-resistant HONE) cells. ........ 65 Figure 27. Cisplatin (CDDP) induces expression of CEBPD and ABCB1 in nasopharyngeal carcinoma HONE1/R (CDDP-resistant HONE) cells. ..... 66 Figure 28. The effects of Gefitinib and S3I-201 on inhibition of ABCB1 transporter-mediated pump activity in nasopharyngeal carcinoma HONE1/R (cisplatin (CDDP)-resistant HONE) cells. ........ 67 Figure 29. Gefitinib and S3I-201 enhance cisplatin (CDDP) sensitivity of nasopharyngeal carcinoma HONE1/R (cisplatin (CDDP)-resistant HONE) cells. .... 68 Figure 30. In vivo anti-tumor effects of cisplatin (CDDP) treatments with or without Gefitinib or S3I-201 in CDDP-resistant NTUB1/P (NTP)-xenografted NOD/SCID mice. .............. 69 Figure 31. Decreased pSTAT3 and CEBPD and loss of ABCB1 and ABCC2 mRNA were observed in cisplatin (CDDP)-resistant NTUB1/P (NTP) cells-bearing NOD/SCID mice. .............. 70 Figure 32. Attenuated CEBPD and ABCB1 are observed in cisplatin (CDDP)-resistant NTUB1/P (NTP) xenografted NOD/SCID mice. ...... 71 List of Appendices Appendix 1. Working model for the molecular mechanism of cisplatin induced drug resistance pathway in urothelial carcinoma of urinary bladder cells.72

    1. Turchi, J.J., Nitric oxide and cisplatin resistance: NO easy answers. Proc Natl Acad
    Sci U S A, 2006. 103(12): p. 4337‐8.
    2. Gosland, M., et al., Insights into mechanisms of cisplatin resistance and potential
    for its clinical reversal. Pharmacotherapy, 1996. 16(1): p. 16‐39.
    3. Wang, D. and S.J. Lippard, Cellular processing of platinum anticancer drugs. Nat
    Rev Drug Discov, 2005. 4(4): p. 307‐20.
    4. Torigoe, T., et al., Cisplatin resistance and transcription factors. Curr Med Chem
    Anticancer Agents, 2005. 5(1): p. 15‐27.
    5. Tatokoro, M., et al., Potential role of Hsp90 inhibitors in overcoming cisplatin
    resistance of bladder cancer‐initiating cells. Int J Cancer, 2012. 131(4): p. 987‐96.
    6. Shinohara, N., et al., Evaluation of multiple drug resistance in human bladder
    cancer cell lines. J Urol, 1993. 150(2 Pt 1): p. 505‐9.
    7. Casares, C., et al., Reactive oxygen species in apoptosis induced by cisplatin: review
    of physiopathological mechanisms in animal models. Eur Arch Otorhinolaryngol,
    2012. 269(12): p. 2455‐9.
    8. Uslu, R. and B. Bonavida, Involvement of the mitochondrion respiratory chain in the
    synergy achieved by treatment of human ovarian carcinoma cell lines with both
    tumor necrosis factor‐alpha and cis‐diamminedichloroplatinum. Cancer, 1996.
    77(4): p. 725‐32.
    9. Miyajima, A., et al., Role of reactive oxygen species in
    cis‐dichlorodiammineplatinum‐induced cytotoxicity on bladder cancer cells. Br J
    Cancer, 1997. 76(2): p. 206‐10.
    10. Benhar, M., et al., Enhanced ROS production in oncogenically transformed cells
    potentiates c‐Jun N‐terminal kinase and p38 mitogen‐activated protein kinase
    activation and sensitization to genotoxic stress. Mol Cell Biol, 2001. 21(20): p.
    6913‐26.
    11. Valko, M., et al., Free radicals and antioxidants in normal physiological functions
    and human disease. Int J Biochem Cell Biol, 2007. 39(1): p. 44‐84.
    12. Roth, B.J., et al., Significant activity of paclitaxel in advanced transitional‐cell
    carcinoma of the urothelium: a phase II trial of the Eastern Cooperative Oncology
    Group. J Clin Oncol, 1994. 12(11): p. 2264‐70.
    13. Meluch, A.A., et al., Paclitaxel and gemcitabine chemotherapy for advanced
    transitional‐cell carcinoma of the urothelial tract: a phase II trial of the Minnie
    pearl cancer research network. J Clin Oncol, 2001. 19(12): p. 3018‐24.
    14. Bellmunt, J., et al., Gemcitabine/paclitaxel‐based three‐drug regimens in advanced
    urothelial cancer. Eur J Cancer, 2000. 36 Suppl 2: p. 17‐25.
    15. Rowinsky, E.K. and R.C. Donehower, Paclitaxel (taxol). N Engl J Med, 1995. 332(15):
    p. 1004‐14.
    16. Haldar, S., J. Chintapalli, and C.M. Croce, Taxol induces bcl‐2 phosphorylation and
    death of prostate cancer cells. Cancer Res, 1996. 56(6): p. 1253‐5.
    17. Ranganathan, S., et al., Altered beta‐tubulin isotype expression in
    paclitaxel‐resistant human prostate carcinoma cells. Br J Cancer, 1998. 77(4): p.
    562‐6.
    18. Dumontet, C., et al., Resistance mechanisms in human sarcoma mutants derived by
    single‐step exposure to paclitaxel (Taxol). Cancer Res, 1996. 56(5): p. 1091‐7.
    19. Wang, T.H., et al., Microtubule‐interfering agents activate c‐Jun N‐terminal
    kinase/stress‐activated protein kinase through both Ras and apoptosis
    signal‐regulating kinase pathways. J Biol Chem, 1998. 273(9): p. 4928‐36.
    20. Amato, S.F., et al., Transient stimulation of the c‐Jun‐NH2‐terminal kinase/activator
    protein 1 pathway and inhibition of extracellular signal‐regulated kinase are early
    effects in paclitaxel‐mediated apoptosis in human B lymphoblasts. Cancer Res,
    1998. 58(2): p. 241‐7.
    21. Lee, L.F., et al., Identification of tumor‐specific paclitaxel (Taxol)‐responsive
    regulatory elements in the interleukin‐8 promoter. Mol Cell Biol, 1997. 17(9): p.
    5097‐105.
    22. Das, K.C. and C.W. White, Activation of NF‐kappaB by antineoplastic agents. Role of
    protein kinase C. J Biol Chem, 1997. 272(23): p. 14914‐20.
    23. Perera, P.Y., N. Qureshi, and S.N. Vogel, Paclitaxel (Taxol)‐induced NF‐kappaB
    translocation in murine macrophages. Infect Immun, 1996. 64(3): p. 878‐84.
    24. Tishler, R.B., et al., Microtubule‐active drugs taxol, vinblastine, and nocodazole
    increase the levels of transcriptionally active p53. Cancer Res, 1995. 55(24): p.
    6021‐5.
    25. Gately, D.P., et al., Cisplatin and taxol activate different signal pathways regulating
    cellular injury‐induced expression of GADD153. Br J Cancer, 1996. 73(1): p. 18‐23.
    26. Lee, L.F., et al., Taxol‐dependent transcriptional activation of IL‐8 expression in a
    subset of human ovarian cancer. Cancer Res, 1996. 56(6): p. 1303‐8.
    27. Watson, J.M., et al., Identification of the structural region of taxol that may be
    responsible for cytokine gene induction and cytotoxicity in human ovarian cancer
    cells. Cancer Chemother Pharmacol, 1998. 41(5): p. 391‐7.
    28. Moos, P.J. and F.A. Fitzpatrick, Taxane‐mediated gene induction is independent of
    microtubule stabilization: induction of transcription regulators and enzymes that modulate inflammation and apoptosis. Proc Natl Acad Sci U S A, 1998. 95(7): p.
    3896‐901.
    29. Ullrich, A., et al., Human epidermal growth factor receptor cDNA sequence and
    aberrant expression of the amplified gene in A431 epidermoid carcinoma cells.
    Nature, 1984. 309(5967): p. 418‐25.
    30. Wells, A., EGF receptor. Int J Biochem Cell Biol, 1999. 31(6): p. 637‐43.
    31. Colquhoun, A.J. and J.K. Mellon, Epidermal growth factor receptor and bladder
    cancer. Postgrad Med J, 2002. 78(924): p. 584‐9.
    32. Neal, D.E., et al., The epidermal growth factor receptor and the prognosis of
    bladder cancer. Cancer, 1990. 65(7): p. 1619‐25.
    33. Sauter, G., et al., Epidermal‐growth‐factor‐receptor expression is associated with
    rapid tumor proliferation in bladder cancer. Int J Cancer, 1994. 57(4): p. 508‐14.
    34. Ciardiello, F., et al., Antitumor effect and potentiation of cytotoxic drugs activity in
    human cancer cells by ZD‐1839 (Iressa), an epidermal growth factor
    receptor‐selective tyrosine kinase inhibitor. Clin Cancer Res, 2000. 6(5): p. 2053‐63.
    35. Shrader, M., et al., Gefitinib reverses TRAIL resistance in human bladder cancer cell
    lines via inhibition of AKT‐mediated X‐linked inhibitor of apoptosis protein
    expression. Cancer Res, 2007. 67(4): p. 1430‐5.
    36. Persons, D.L., et al., Cisplatin‐induced activation of mitogen‐activated protein
    kinases in ovarian carcinoma cells: inhibition of extracellular signal‐regulated
    kinase activity increases sensitivity to cisplatin. Clin Cancer Res, 1999. 5(5): p.
    1007‐14.
    37. Wang, X., J.L. Martindale, and N.J. Holbrook, Requirement for ERK activation in
    cisplatin‐induced apoptosis. J Biol Chem, 2000. 275(50): p. 39435‐43.
    38. Balamurugan, K. and E. Sterneck, The many faces of C/EBPdelta and their
    relevance for inflammation and cancer. Int J Biol Sci, 2013. 9(9): p. 917‐33.
    39. Ko, C.Y., et al., CCAAT/enhancer binding protein delta (CEBPD) elevating PTX3
    expression inhibits macrophage‐mediated phagocytosis of dying neuron cells.
    Neurobiol Aging. 33(2): p. 422 e11‐25.
    40. Wang, J.M., et al., Functional role of NF‐IL6beta and its sumoylation and
    acetylation modifications in promoter activation of cyclooxygenase 2 gene. Nucleic
    Acids Res, 2006. 34(1): p. 217‐31.
    41. Lai, P.H., et al., HDAC1/HDAC3 modulates PPARG2 transcription through the
    sumoylated CEBPD in hepatic lipogenesis. Biochim Biophys Acta, 2008. 1783(10): p.
    1803‐14.
    42. Ko, C.Y., et al., Epigenetic silencing of CCAAT/enhancer‐binding protein delta activity
    by YY1/polycomb group/DNA methyltransferase complex. J Biol Chem, 2008. 283(45): p. 30919‐32.
    43. Pan, Y.C., et al., CEBPD reverses RB/E2F1‐mediated gene repression and
    participates in HMDB‐induced apoptosis of cancer cells. Clin Cancer Res. 16(23): p.
    5770‐80.
    44. Tang, D., G.S. Sivko, and J.W. DeWille, Promoter methylation reduces C/EBPdelta
    (CEBPD) gene expression in the SUM‐52PE human breast cancer cell line and in
    primary breast tumors. Breast Cancer Res Treat, 2006. 95(2): p. 161‐70.
    45. Ikezoe, T., et al., CCAAT/enhancer‐binding protein delta: a molecular target of
    1,25‐dihydroxyvitamin D3 in androgen‐responsive prostate cancer LNCaP cells.
    Cancer Res, 2005. 65(11): p. 4762‐8.
    46. Gery, S., et al., C/EBPdelta expression in a BCR‐ABL‐positive cell line induces growth
    arrest and myeloid differentiation. Oncogene, 2005. 24(9): p. 1589‐97.
    47. Wu, S.R., et al., CCAAT/enhancer‐binding protein delta mediates tumor necrosis
    factor alpha‐induced Aurora kinase C transcription and promotes genomic
    instability. J Biol Chem. 286(33): p. 28662‐70.
    48. Balamurugan, K., et al., The tumour suppressor C/EBPdelta inhibits FBXW7
    expression and promotes mammary tumour metastasis. EMBO J. 29(24): p.
    4106‐17.
    49. Sanford, D.C. and J.W. DeWille, C/EBPdelta is a downstream mediator of IL‐6
    induced growth inhibition of prostate cancer cells. Prostate, 2005. 63(2): p. 143‐54.
    50. Koh, M.Y., T.R. Spivak‐Kroizman, and G. Powis, Inhibiting the hypoxia response for
    cancer therapy: the new kid on the block. Clin Cancer Res, 2009. 15(19): p. 5945‐6.
    51. Yun, Z., et al., Inhibition of PPAR gamma 2 gene expression by the HIF‐1‐regulated
    gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev
    Cell, 2002. 2(3): p. 331‐41.
    52. Tang, Y., et al., Effect of hypoxic preconditioning on brain genomic response before
    and following ischemia in the adult mouse: identification of potential
    neuroprotective candidates for stroke. Neurobiol Dis, 2006. 21(1): p. 18‐28.
    53. Huang, A.M., et al., The Cebpd (C/EBPdelta) gene is induced by luteinizing
    hormones in ovarian theca and interstitial cells but is not essential for mouse ovary
    function. PLoS One, 2007. 2(12): p. e1334.
    54. Lekstrom‐Himes, J. and K.G. Xanthopoulos, Biological role of the
    CCAAT/enhancer‐binding protein family of transcription factors. J Biol Chem, 1998.
    273(44): p. 28545‐8.
    55. Huang, A.M., et al., Loss of CCAAT/enhancer binding protein delta promotes
    chromosomal instability. Oncogene, 2004. 23(8): p. 1549‐57.
    56. Thangaraju, M., et al., C/EBPdelta is a crucial regulator of pro‐apoptotic gene expression during mammary gland involution. Development, 2005. 132(21): p.
    4675‐85.
    57. Wang, J.M., J.T. Tseng, and W.C. Chang, Induction of human NF‐IL6beta by
    epidermal growth factor is mediated through the p38 signaling pathway and cAMP
    response element‐binding protein activation in A431 cells. Mol Biol Cell, 2005.
    16(7): p. 3365‐76.
    58. Hour, T.C., et al., Transcriptional up‐regulation of SOD1 by CEBPD: a potential
    target for cisplatin resistant human urothelial carcinoma cells. Biochem Pharmacol.
    80(3): p. 325‐34.
    59. Cho, S., et al., Notch1 regulates the expression of the multidrug resistance gene
    ABCC1/MRP1 in cultured cancer cells. Proc Natl Acad Sci U S A, 2011. 108(51): p.
    20778‐83.
    60. Hou, H., et al., Tunicamycin Potentiates Cisplatin Anticancer Efficacy through the
    DPAGT1/Akt/ABCG2 Pathway in Mouse Xenograft Models of Human Hepatocellular
    Carcinoma. Mol Cancer Ther, 2013. 12(12): p. 2874‐84.
    61. Taniguchi, K., et al., A human canalicular multispecific organic anion transporter
    (cMOAT) gene is overexpressed in cisplatin‐resistant human cancer cell lines with
    decreased drug accumulation. Cancer Res, 1996. 56(18): p. 4124‐9.
    62. Esteva, F.J., et al., Chemotherapy of metastatic breast cancer: what to expect in
    2001 and beyond. Oncologist, 2001. 6(2): p. 133‐46.
    63. Ambudkar, S.V., et al., Biochemical, cellular, and pharmacological aspects of the
    multidrug transporter. Annu Rev Pharmacol Toxicol, 1999. 39: p. 361‐98.
    64. Raggers, R.J., I. Vogels, and G. van Meer, Multidrug‐resistance P‐glycoprotein
    (MDR1) secretes platelet‐activating factor. Biochem J, 2001. 357(Pt 3): p. 859‐65.
    65. Raaijmakers, M.H., et al., ABCB1 modulation does not circumvent drug extrusion
    from primitive leukemic progenitor cells and may preferentially target residual
    normal cells in acute myelogenous leukemia. Clin Cancer Res, 2006. 12(11 Pt 1): p.
    3452‐8.
    66. Fletcher, J.I., et al., ABC transporters in cancer: more than just drug efflux pumps.
    Nat Rev Cancer, 2010. 10(2): p. 147‐56.
    67. Hour, T.C., et al., Transcriptional up‐regulation of SOD1 by CEBPD: a potential
    target for cisplatin resistant human urothelial carcinoma cells. Biochem Pharmacol,
    2010. 80(3): p. 325‐34.
    68. Hasegawa, S., et al., Expression of multidrug resistance‐associated protein (MRP),
    MDR1 and DNA topoisomerase II in human multidrug‐resistant bladder cancer cell
    lines. Br J Cancer, 1995. 71(5): p. 907‐13.
    69. Kimiya, K., et al., Establishment and characterization of doxorubicin‐resistant human bladder cancer cell line, KK47/ADM. J Urol, 1992. 148(2 Pt 1): p. 441‐5.
    70. Nakagawa, M., et al., Clinical significance of multi‐drug resistance associated
    protein and P‐glycoprotein in patients with bladder cancer. J Urol, 1997. 157(4): p.
    1260‐4; discussion 1264‐5.
    71. Judson, P.L., et al., Cisplatin inhibits paclitaxel‐induced apoptosis in
    cisplatin‐resistant ovarian cancer cell lines: possible explanation for failure of
    combination therapy. Cancer Res, 1999. 59(10): p. 2425‐32.
    72. Yeh, M.Y., et al., Establishment and characterization of a human urinary bladder
    carcinoma cell line (TSGH‐8301). J Surg Oncol, 1988. 37(3): p. 177‐84.
    73. Yu, H.J., et al., Characterization of a newly established human bladder carcinoma
    cell line, NTUB1. J Formos Med Assoc, 1992. 91(6): p. 608‐13.
    74. Kim, W.T., et al., S100A9 and EGFR gene signatures predict disease progression in
    muscle invasive bladder cancer patients after chemotherapy. Ann Oncol, 2014.
    25(5): p. 974‐9.
    75. Silva, C.M., Role of STATs as downstream signal transducers in Src family
    kinase‐mediated tumorigenesis. Oncogene, 2004. 23(48): p. 8017‐23.
    76. Sriuranpong, V., et al., Epidermal growth factor receptor‐independent constitutive
    activation of STAT3 in head and neck squamous cell carcinoma is mediated by the
    autocrine/paracrine stimulation of the interleukin 6/gp130 cytokine system. Cancer
    Res, 2003. 63(11): p. 2948‐56.
    77. Flaig, T.W., et al., Dual epidermal growth factor receptor and vascular endothelial
    growth factor receptor inhibition with vandetanib sensitizes bladder cancer cells to
    cisplatin in a dose‐ and sequence‐dependent manner. BJU Int, 2009. 103(12): p.
    1729‐37.
    78. Sen, M., et al., Targeting Stat3 abrogates EGFR inhibitor resistance in cancer. Clin
    Cancer Res. 18(18): p. 4986‐96.
    79. Lin, L., et al., A novel small molecule inhibits STAT3 phosphorylation and DNA
    binding activity and exhibits potent growth suppressive activity in human cancer
    cells. Mol Cancer, 2010. 9: p. 217.
    80. Clifford, S.C., et al., Increased mdr1 gene transcript levels in high‐grade carcinoma
    of the bladder determined by quantitative PCR‐based assay. Br J Cancer, 1994.
    69(4): p. 680‐6.
    81. Tada, Y., et al., MDR1 gene overexpression and altered degree of methylation at
    the promoter region in bladder cancer during chemotherapeutic treatment. Clin
    Cancer Res, 2000. 6(12): p. 4618‐27.
    82. Floyd, J.W., C.W. Lin, and G.R. Prout, Jr., Multi‐drug resistance of a
    doxorubicin‐resistant bladder cancer cell line. J Urol, 1990. 144(1): p. 169‐71.
    83. Tada, Y., et al., Increased expression of multidrug resistance‐associated proteins in
    bladder cancer during clinical course and drug resistance to doxorubicin. Int J
    Cancer, 2002. 98(4): p. 630‐5.
    84. Hoffmann, A.C., et al., MDR1 and ERCC1 expression predict outcome of patients
    with locally advanced bladder cancer receiving adjuvant chemotherapy. Neoplasia,
    2010. 12(8): p. 628‐36.
    85. Piulats, J.M., et al., Molecular mechanisms behind the resistance of cisplatin in
    germ cell tumours. Clin Transl Oncol, 2009. 11(12): p. 780‐6.
    86. Yagoda, A., Chemotherapy of Urothelial Tract Tumors. Cancer, 1987. 60(3): p.
    574‐585.
    87. Yeh, W.C., et al., Cascade regulation of terminal adipocyte differentiation by three
    members of the C/EBP family of leucine zipper proteins. Genes Dev, 1995. 9(2): p.
    168‐81.
    88. Weiland, T., et al., Sensitization by 5‐azacytidine toward death receptor‐induced
    hepatic apoptosis. J Pharmacol Exp Ther, 2009. 328(1): p. 107‐15.
    89. Chuang, C.H., et al., The combination of the prodrugs perforin‐CEBPD and
    perforin‐granzyme B efficiently enhances the activation of caspase signaling and
    kills prostate cancer. Cell Death Dis, 2014. 5: p. e1220.
    90. Wang, S.M., et al., Increase of zinc finger protein 179 in response to
    CCAAT/enhancer binding protein delta conferring an antiapoptotic effect in
    astrocytes of Alzheimer's disease. Mol Neurobiol, 2015. 51(1): p. 370‐82.
    91. Weinstein, R.S., et al., Relationship of the expression of the multidrug resistance
    gene product (P‐glycoprotein) in human colon carcinoma to local tumor
    aggressiveness and lymph node metastasis. Cancer Res, 1991. 51(10): p. 2720‐6.
    92. Fojo, A.T., et al., Intrinsic drug resistance in human kidney cancer is associated with
    expression of a human multidrug‐resistance gene. J Clin Oncol, 1987. 5(12): p.
    1922‐7.
    93. Campa, D., et al., A comprehensive study of polymorphisms in ABCB1, ABCC2 and
    ABCG2 and lung cancer chemotherapy response and prognosis. Int J Cancer.
    131(12): p. 2920‐8.
    94. Takiguchi, M., The C/EBP family of transcription factors in the liver and other
    organs. Int J Exp Pathol, 1998. 79(6): p. 369‐91.
    95. Conze, D., et al., Autocrine production of interleukin 6 causes multidrug resistance
    in breast cancer cells. Cancer Res, 2001. 61(24): p. 8851‐8.
    96. Zhou, B.B. and S.J. Elledge, The DNA damage response: putting checkpoints in
    perspective. Nature, 2000. 408(6811): p. 433‐9.
    97. Pearce, A.K. and T.C. Humphrey, Integrating stress‐response and cell‐cycle checkpoint pathways. Trends Cell Biol, 2001. 11(10): p. 426‐33.
    98. Knebel, A., et al., Dephosphorylation of receptor tyrosine kinases as target of
    regulation by radiation, oxidants or alkylating agents. EMBO J, 1996. 15(19): p.
    5314‐25.
    99. Yoshizumi, M., et al., Src and Cas mediate JNK activation but not ERK1/2 and p38
    kinases by reactive oxygen species. J Biol Chem, 2000. 275(16): p. 11706‐12.
    100. Moro, L., et al., Integrin‐induced epidermal growth factor (EGF) receptor activation
    requires c‐Src and p130Cas and leads to phosphorylation of specific EGF receptor
    tyrosines. J Biol Chem, 2002. 277(11): p. 9405‐14.
    101. Chen, K., et al., c‐Jun N‐terminal kinase activation by hydrogen peroxide in
    endothelial cells involves SRC‐dependent epidermal growth factor receptor
    transactivation. J Biol Chem, 2001. 276(19): p. 16045‐50.
    102. Biscardi, J.S., et al., c‐Src‐mediated phosphorylation of the epidermal growth factor
    receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function.
    J Biol Chem, 1999. 274(12): p. 8335‐43.
    103. Aikawa, R., et al., Oxidative stress activates extracellular signal‐regulated kinases
    through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest,
    1997. 100(7): p. 1813‐21.
    104. Tiganis, T., Protein tyrosine phosphatases: dephosphorylating the epidermal
    growth factor receptor. IUBMB Life, 2002. 53(1): p. 3‐14.
    105. Lee, S.R., et al., Reversible inactivation of protein‐tyrosine phosphatase 1B in A431
    cells stimulated with epidermal growth factor. J Biol Chem, 1998. 273(25): p.
    15366‐72.
    106. Cunnick, J.M., et al., Role of tyrosine kinase activity of epidermal growth factor
    receptor in the lysophosphatidic acid‐stimulated mitogen‐activated protein kinase
    pathway. J Biol Chem, 1998. 273(23): p. 14468‐75.
    107. Wang, X., et al., Epidermal growth factor receptor‐dependent Akt activation by
    oxidative stress enhances cell survival. J Biol Chem, 2000. 275(19): p. 14624‐31.
    108. Leu, C.M., C. Chang, and C. Hu, Epidermal growth factor (EGF) suppresses
    staurosporine‐induced apoptosis by inducing mcl‐1 via the mitogen‐activated
    protein kinase pathway. Oncogene, 2000. 19(13): p. 1665‐75.
    109. Winograd‐Katz, S.E. and A. Levitzki, Cisplatin induces PKB/Akt activation and
    p38(MAPK) phosphorylation of the EGF receptor. Oncogene, 2006. 25(56): p.
    7381‐90.
    110. Bromberg, J.F., et al., Stat3 as an oncogene. Cell, 1999. 98(3): p. 295‐303.
    111. Duan, Z., et al., 8‐benzyl‐4‐oxo‐8‐azabicyclo[3.2.1]oct‐2‐ene‐6,7‐dicarboxylic acid
    (SD‐1008), a novel janus kinase 2 inhibitor, increases chemotherapy sensitivity in human ovarian cancer cells. Mol Pharmacol, 2007. 72(5): p. 1137‐45.

    下載圖示 校內:2017-07-01公開
    校外:2017-07-01公開
    QR CODE