簡易檢索 / 詳目顯示

研究生: 蕭意瑾
Xiao, I-Chin
論文名稱: 車用攝像鏡頭內部防水結構設計與O型環密封技術優化與應用
The Design of Waterproof Structures Inside Automotive Camera and Optimization and Application of O-ring Sealing Technology
指導教授: 蕭世文
Hsiao, Shih-Wen
謝孟達
Shieh, Meng-Dar
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 115
中文關鍵詞: 橡膠防水ALGOR有限元素分析田口方法
外文關鍵詞: Rubber Sealing, Waterproof Design, ALGOR, Finite Element Analysis (FEA), Taguchi Method
相關次數: 點閱:23下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在設計與優化車用倒車攝像鏡頭內部的防水密封結構。倒車攝像鏡頭為現代車輛之重要安全輔助裝置,透過視覺與聽覺資訊輔助駕駛判斷,其裝設位置通常位於車外,需長時間暴露於各種惡劣環境條件下,如風雨、日曬、高溫、濕度變化及氣壓波動等。因此,對於倒車攝像鏡頭而言,相較於以往的產品,防水標準需達到最高級別。如果無法達到最高防水標準,攝像鏡頭的耐用度和堅固度將會受到影響,同時,車子的安全係數也相應降低。
    目前市面上有多種的倒車攝像鏡頭,各具優缺點,本文分析現有產品功能及特色,並整合相關技術,探索市場上產品的狀況。雖然現有產品已具備基本防水功能,然而實際使用中仍常發生滲水、不良率偏高及結構壽命不足等問題,顯示設計與生產端仍有優化空間。此外,即使在設計技術相當成熟下,生產線仍有一定的失敗率與不良品問題,並且產品的耐久性常不佳。為此,本文提出一套結合有限元素模擬與品質工程之分析流程,針對攝像鏡頭內部防水橡膠密封結構進行優化設計與驗證。
    本研究使用田口實驗方法與有限元素分析進行車用攝像鏡頭的防水橡膠性能實驗。首先,先行開發本研究的鏡頭。後以田口實驗設計法為基礎,規劃四個控制因子(壓縮量、溝槽寬度、溝槽圓角、防水橡膠造型),建立 (L9(34)) 直交表進行九組模擬組合。將此九組模型的上蓋、防水橡膠與下蓋之二維結構進入到應力非線性有限元素分析,模擬防水橡膠在不同幾何參數下的應力分布情形。再計算 S/N 比以評估最佳實驗,並透過S/N主響應表與主響應圖預測出最佳參數實驗10。
    分析結果顯示,最佳實驗為實驗9之A3B3C2D1,其對應參數為壓縮量0.45mm、下蓋溝槽寬度1.4mm、下蓋溝槽圓角半徑0.2mm及X 型橡膠截面,並且研究出如果無考慮到田口交互作用之下,預測出最佳參數組合的實驗10並無實驗9來的佳。此外,本文進一步探討各因子對應性能表現之貢獻度,分析其水準差異與排列順序,並比較成功與失敗實驗之設計差異。
    綜合而言,本研究提出一套結合模擬與統計分析之設計流程,不僅可作為車用攝像鏡頭防水結構設計之系統化參考,亦有助於提升產品密封品質與結構耐久性,降低不良率與生產成本,進而延長產品壽命並提升行車安全性,提供機構設計工程一套有效且具數據支撐的優化方法。

    This study aims to design and optimize the internal waterproof sealing structure of automotive rearview cameras. As a critical safety-assist device in modern vehicles, the rearview camera provides visual and auditory feedback to help drivers make judgments, especially during reversing. These cameras are typically installed outside the vehicle and are exposed to harsh environmental conditions such as wind, rain, sunlight, high temperatures, humidity fluctuations, and pressure variations. Therefore, rearview cameras must meet the highest waterproof standards to ensure durability and structural integrity. Failure to do so compromises both the longevity of the camera and overall vehicle safety.
    Currently, various types of rearview cameras exist on the market, each with its own strengths and weaknesses. This study analyzes the functionalities and features of existing products and integrates relevant technologies to evaluate the current market landscape. Although most commercial products possess basic waterproof capabilities, issues such as water ingress, high defect rates, and insufficient structural lifespan persist in real-world applications. Even with mature design techniques, production lines still face a certain failure rate and challenges in product durability. To address these problems, this research proposes an analytical framework that integrates finite element simulation with quality engineering to optimize and validate the waterproof rubber sealing structure within the camera module.
    In this study, the Taguchi method and nonlinear finite element analysis (FEA) are employed to investigate the performance of the waterproof rubber seals. A camera model is first developed, followed by the design of experiments based on four control factors—compression amount, groove width, groove fillet radius, and rubber cross-sectional shape. An L9(3⁴) orthogonal array is constructed, generating nine simulation combinations. Each model consists of a top cover, rubber seal, and bottom cover represented in 2D cross-sections, and their stress distributions are analyzed under different geometric parameters. The signal-to-noise (S/N) ratio is then calculated to evaluate experimental performance, and the main effect table and plot are used to predict the optimal parameter combination (Experiment 10).
    Results indicate that Experiment 9 (A3B3C2D1) yields the best performance, with the following parameters: compression amount of 0.45 mm, groove width of 1.4 mm, fillet radius of 0.2 mm, and an X-shaped rubber cross-section. It is further observed that the predicted optimal design (Experiment 10), which does not account for interaction effects, performs worse than Experiment 9, highlighting the limitations of the Taguchi method in certain contexts.
    Additionally, this study examines the contribution and ranking of each factor and analyzes performance differences between successful and failed experimental setups. In conclusion, the proposed simulation and evaluation framework offers a systematic reference for designing waterproof structures in automotive rearview cameras. It not only improves sealing quality and structural durability but also reduces defect rates and production costs, thereby extending product lifespan and enhancing overall safety. This methodology provides a practical and data-driven approach for mechanical design optimization in engineering applications.

    摘要 i SUMMARY iii ACKNOWLEDGEMENTS v TABLE OF CONTENTS vi LIST OF TABLES ix LIST OF FIGURES x CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Research Motivation 2 1.2.1 Issues in Current Vehicle Camera Systems 2 1.2.2 Challenges In Current Commercial Camera Systems 2 1.2.3 Consequences of Sealing System Failure 3 1.2.4 Issues Caused By Improper Design 3 1.2.5 Reasons and Benefits of Improving Waterproof Rubber 4 1.2.6 Research Background and Motivation 5 1.3 Research Framework 5 CHAPTER 2 LITERATURE REVIEW 8 2.1 Waterproofing Methods 8 2.2 Properties of Rubber 10 2.2.1 Introduction to Rubber Materials 10 2.2.2 Rubber Sealing Performance 10 2.2.3 Geometric Nonlinearity and Material Behavior of Rubber 14 2.3 Causes of Water Ingress 15 2.4 Exploration of Waterproof Rubber 16 2.4.1 Basic Introduction to Waterproof Rubber 16 2.4.2 Sealing Requirements 17 2.4.3 Strain Relationship and Boundary Conditions 18 2.4.4 Compression Conditions and Waterproof Contact Stress Behavior 25 2.4.5 Influence of Pressure on Groove Width 31 2.5 Underwater Pressure Calculation 32 2.6 Taguchi Method 34 2.6.1 Quality Characteristics 35 2.6.2 Experimental Factors and Selection 35 2.6.3 Orthogonal Array 37 2.6.4 Process Optimization 38 2.6.5 Signal-to-Noise (S/N) Ratio 38 CHAPTER 3 DESIGN AND DEVELOPMENT OF AUTOMOTIVE CAMERA SYSTEMS 40 3.1 Market Survey of Products 40 3.2 Product Design 43 3.2.1 Exterior Design 43 3.2.2 Mechanical Design 45 3.3 Basic Structure of the Waterproofing System 46 3.3.1 Water Flow Behavior 47 3.3.2 Considerations in Waterproof System Design 47 3.3.3 Empirical Values for Waterproof System Design 48 3.4 Description of Selected Factors 49 CHAPTER 4 EXPERIMENTAL METHODOLOGY 52 4.1 Waterproofing Methods 52 4.2 Simulation Procedure 53 4.3 Taguchi Method-Based Experimental Design 54 4.3.1 Analysis of Influencing Factors 55 4.3.2 Selection of Control Factors 55 4.3.3 Factor Level Definition 57 4.3.4 L9(3⁴) Orthogonal Array Design 57 4.3.5 S/N Ratio And Stress Result Records 58 4.4 Construction of Stress Analysis Models 59 4.4.1 Waterproof Structure Analysis 61 4.4.2 Taguchi Experimental Matrix and Simulation Results 68 4.4.3 S/N Ratio Response and Main Effects Analysis 69 CHAPTER 5 RESULTS AND DISCUSSION 71 5.1 Optimal Parameter Analysis 71 5.1.1 Evaluation Metrics for Experimental Data 72 5.1.2 Optimal Parameter Configuration : Experimental Group 9 73 5.1.3 Stress Validation for Experimental Group 9 73 5.1.4 Analysis of Experimental Group 9 74 5.1.5 Water Flow Resistance of Seal 74 5.2 Experimental 9 vs. Predicted Optimal (Experiment 10) 76 5.3 Evaluation of Taguchi and Effectiveness 78 5.4 Analysis of Other Experimental Cases 79 5.5 Influence of Factors and Level Comparison 83 5.5.1 Performance Variation across Factor Levels 84 5.5.2 Stress Analysis Results of Experiment 9 86 5.5.3 Impact of Reaction Force on Cover Assembly 93 CHAPTER 6 CONCLUSION 95 6.1 Findings Summary 95 6.2 Research Conclusions 95 6.3 Design Recommendations and Future Research Directions 96 REFERENCES 97

    李輝煌(2011). 田口方法: 品質設計的原理與實務(第4版). 台北市:高立圖書有限公司。[Li, H. H. (2011). Taguchi method: Principles and practices (4th ed.). Taipei City, Taiwan, ROC: Gao-Li Press.]
    寇曉東, 唐可, & 田彩軍(2008). ALGOR結構分析高級教程. 北京市:清華大學出版社。[Kou, X. D., Tang, K., & Tian, C. J. (2008). Advanced tutorial on ALGOR structural analysis. Beijing, China: Tsinghua University Press.]
    彭善富(2014). 光電照明產品密封與防水技術. 廣州:華南理工大學出版社。[Peng, S. F. (2014). Sealing and waterproofing technology of photoelectric lighting products. Guangzhou, China: South China University of Technology Press.]
    王維君(2001). 田口方法在實驗設計中的應用與限制(碩士論文). 台北市:國立臺灣大學工業工程學研究所。[Wang, W. J. (2001). Application and limitations of Taguchi method in experimental design (Master’s thesis). National Taiwan University, Taiwan, ROC.]
    游東榮(2022). 車用電子產品外殼橡膠導線套結構之防水效果的CAE分析與探討(碩士論文). 台北市:台北科技大學機械工程系。[Yu, D. R. (2022). CAE analysis of waterproof effectiveness of rubber bushing structures for automotive electronic enclosures (Master’s thesis). National Taipei University of Technology, Taiwan, ROC.]
    艾恪瑟設計(2016, November 10). 淺談防水機構設計. Excell Design. 取自 https://excelldesigncom.wordpress.com/2016/11/10/%E6%B7%BA%E8%AB%87%E9%98%B2%E6%B0%B4%E6%A9%9F%E6%A7%8B%E8%A8%AD%E8%A8%88/ [Excell Design. (2016, November 10). A brief introduction to waterproof mechanism design. Retrieved from https://excelldesigncom.wordpress.com/...]
    Continental Automotive. (2022). Multi-function mono camera MFC527. Retrieved from https://www.continental-automotive.com/en/components/cameras/multi-function-mono-camera-mfc527.html
    Ebrahimi, A., & Akbari, E. (2023). Design and implementation of an affordable reversing camera system with object detection and OBD-2 integration for commercial vehicles.
    Ken. (2023). Structural waterproof design and applications of waterproofing processes (Part 1). Ken's Blog. Retrieved from https://kenddg.tw/waterproof-structure-design/
    Ken. (2023). Structural waterproof design and applications of waterproofing processes (Part 2). Ken's Blog. Retrieved from https://kenddg.tw/waterproofing-process-methods/
    Kim, T. Y., Shin, M. H., & Kim, Y. J. (2013). Design of off-axis wide-angle lens for the automobile application. Journal of the Optical Society of Korea, 17(4), 336–343.
    LG Innotek. (2020). LG 8Mp autonomous driving camera. Retrieved from https://www.lginnotek.com/solution/autoDrive.do?locale=en
    M Seals. (2018). U-shaped seals technical guide. Retrieved from https://www.m-seals.com
    Mobileye 630 ADAS. (2021). Mobileye 630 ADAS. Retrieved from https://www.adasmobile.com/
    Montgomery, D. C. (2020). Design and analysis of experiments (10th ed.). Hoboken, NJ: Wiley.
    Mitra, A. (2011). The Taguchi method. Wiley Interdisciplinary Reviews: Computational Statistics, 3(5), 472–480.
    OmniVision Technologies, Inc. (2023). Products. Retrieved from https://www.ovt.com/products/
    Pao, W. Y., Li, L., & Agelin-Chaab, M. (2023). A method of evaluating ADAS camera performance in rain: Case studies with hydrophilic and hydrophobic lenses. In Proceedings of the Canadian Society for Mechanical Engineering International Congress, Computational Fluid Dynamics Canada International Congress, CSME - CFD-SC2023. Sherbrooke, QC, Canada: Canadian Society for Mechanical Engineering.
    Parker Hannifin Corporation. (2007). Parker O-ring handbook (ORD 5700). Retrieved from https://www.parker.com/literature/ORD%205700%20Parker_O-Ring_Handbook.pdf
    Phadke, M. S. (1989). Quality engineering using robust design. Englewood Cliffs, NJ: Prentice Hall.
    SSP Manufacturing. (2015). Hydraulic seal applications. Retrieved from https://www.sspseals.com
    Valeo. (2021). Satellite cameras. Retrieved from https://www.valeo.com/en/catalogue/cda/satellite-cameras/
    Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., & Darrell, T. (2018). BDD100K: A diverse driving video database with scalable annotation tooling. arXiv preprint arXiv:1805.04687, 2(5), 6.
    Zhou, W., & Xie, Z. (2024). Sealing rubber ring design based on machine learning algorithm combined progressive optimization method. Tribology International, 110173.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE