簡易檢索 / 詳目顯示

研究生: 王信惠
Wang, Sin-Hui
論文名稱: 一維金屬氧化物半導體奈米結構製作及其感測器之研製
The Growth of One-dimension Metal Oxide Semiconductor Nanostructures and their Application for Sensor Devices
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 127
中文關鍵詞: 氧化銦二氧化鈦奈米結構感測器
外文關鍵詞: In2O3, TiO2, nanostructures, sensor devices
相關次數: 點閱:87下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要著重在一維金屬氧化物半導體奈米結構,包含氧化銦(In2O3)及二氧化鈦(TiO2)。製作並分析其奈米結構之感測器元件特性。
    首先,我們利用氣-液-固(VLS)生長機制製作氧化銦奈米線(NWs),並應用於酒精氣體感測器。我們發現隨著製程溫度增加,平均長度增加且平均直徑減少。於氣體感測器的應用中,製程溫度1000°C之試片於環境溫度300°C對100 ppm的酒精有最好響應值(Ra/Rg)13.97。根據氣-液-固之成長機制,我們固定製程溫度,藉由改變基板放置位置增加動力學常數,成長出金屬銦修飾之氧化銦奈米寶塔。銦-氧化銦奈米寶塔的導通電場值為2.0 V/μm及場增强因子為3590。透過銦-氧化銦奈米寶塔中的銦累積電子並產生電子穿隧,增加場發射特性。
    第二部分,我們同樣利用氣-液-固生長機制於二氧化矽/矽基板上成長二氧化鈦奈米線。探討兩種不同波長之紫外光光源對二氧化鈦奈米線場發射元件功函數的影響。由於UVC的波長大於二氧化鈦的能隙,因此電子擁有較大的能量較易穿隧至真空能階且產生多餘的熱能降低導通電場值。雖然照射UVC之元件功函數較小,但響應時間與回復時間皆大於照射UVA之元件。綜合上述的各項特性,我們建議在選擇利用照射紫外光提升元件場發射特性時,應優先選擇波長與材料能隙較為接近之光源。
    最後,針對二氧化鈦材料化學穩定性佳之特性,我們利用金奈米粒子修飾二氧化鈦奈米柱並照射可見光製作出非酶式葡萄糖生物光感測器。由於奈米金粒子吸收可見光後產生表面電漿共振效應(SPR)。經照射可見光後之電流值在0.1 M氫氧化鈉與10 mM葡萄糖溶液中在工作電壓0.17 V時較於暗室中增加4倍。顯示金奈米粒子/二氧化鈦奈米柱/摻氟的氧化錫基板於照射可見光後為一個優異的非酶式葡萄糖生物光感測器。

    The main goal of this dissertation is the growth of one-dimensional metal oxide semiconductor nanostructures, including indium oxide (In2O3) and titanium dioxide (TiO2). Fabricate and analysis of their nanostructure-based sensor device applications.
    First of all, we grow the In2O3 nanowires (NWs) through the vapor-liquid-solid (VLS) growth mechanism and applied In2O3 NWs ethanol gas sensor. It was found that the average length increased and the average diameter decreased as the growth temperature increased. For the fabricated gas sensors, the best response (Ra/Rg) was 13.97 for the samples thermally treated at 1000°C, respectively, at the operating temperatures 300°C with 100 ppm ethanol. Based on the VLS growth mechanism, we fixed the growth temperature but changed the place of the substructure, which increased the kinetics factor, and demonstrated the In-In2O3 composite nanopagodas (NPs). The turn-on fields and β of In-In2O3 NPs were 2.0 V/μm and 3590. The indium of In-In2O3 NPs accumulated electrons and formed electrons tunnelling, which enhanced the performance of field emission properties.
    On the part, TiO2 NWs with rutile structures on a SiO2/Si substrate were grown by VLS growth mechanism. Discussed the fabrication of TiO2 NWs field emission and concluded the influence of two different wavelengths of UV illumination on work function. The wavelength of UVC was higher than the TiO2 band-gap, so the electrons more easily tunneled to the vacuum level and generated excess heat that lowered the turn-on field. The work function exposed to UVC was lower than which exposed to UVA, but the response time and recovery time were much longer. Based on the point of view, we recommend the selection of an illumination wavelength should close to the semiconductor energy bandgap.
    Lastly, according the advantage of TiO2, the good chemical stability, anonenzymatic glucose photobiosensor was developed based on Au-nanoparticle-decorated TiO2 nanorods under visible illumination. Au nanoparticles absorbed the visible illumination, resulting in surface plasmon resonance (SPR). The current under visible illumination was 4 times higher than in the dark when in 0.1 M NaOH and 10 mM glucose solution at a potential of 0.17 V. These results indicate that the Au nanoparticles/TiO2 nanorods/FTO under visible illumination feature outstanding properties as a nonenzymatic glucose photobiosensor.

    摘要 I Abstract III 致謝 V Contents VI Table Captions IX Figure Captions X Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.1.1 Introduction to one dimension nanotechnology 1 1.1.2 The Background of In2O3 Device 2 1.1.3 The Background of TiO2 Device 4 1.1.4 Overview of Gas Sensors 6 1.1.5 Overview of Field Emission 7 1.1.6 Overview of Nonenzymatic Glucose Biosensor 7 1.2 Organization of Dissertation 8 Reference 13 Chapter 2 Synthetize methods, Theory of Sensor Devices and Experimental Apparatus 19 2.1 Growth Method of In2O3 nanostructures 19 2.1.1 Electrode position 20 2.1.2 Rapid Heating 20 2.1.3 Chemical Vapor Deposition 21 2.1.4 Vapor-Liquid-Solid 22 2.2 Growth Method of TiO2 Nanostructures 23 2.2.1 VS method and VLS method 24 2.2.2 Sol-gel method 25 2.2.3 Hydrothermal method 25 2.3 The Theory of Sensor Devices 26 2.3.1 Theory of Gas Sensor 26 2.3.2 Theory of Field Emission 28 2.3.3 Theory of Nonenzymatic Glucose Biosensors 32 Reference 38 Chapter 3 In2O3 Nanostructures and their Application for Sensor Devices 43 3.1 Synthesis of In2O3 Nanowires and their Gas Sensing Properties 43 3.2 Enhanced Field Emission Properties Based on In-In2O3 Composite Nanopagodas 52 Reference 78 Chapter 4 Photo-enhanced The Sensor Devices Properties from TiO2 Nanostructures 85 4.1 Enhanced Field Emission of TiO2 Nanowires with UV Illumination 85 4.2 Surface Plasmon Resonance Enhanced Nonenzymatic Glucose Photobiosensor Based on Au Nanoparticles Decorated TiO2 Nanorods under Visible Illumination 91 Reference 116 Chapter 5 Conclusions and Future Work 123 5.1 Conclusions 123 5.2 Future Work 125 Publication List of Sin-Hui Wang 126

    Chapter 1
    [1] http://www.nano.gov/nanotech-101/what/nano-size
    [2] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991.
    [3] J. M. Bao, M. A. Zimmler, F. Capasso, X. W. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett., vol. 6, pp. 1719-1722, 2006.
    [4] Y. F. Lin and W. B. Jian, “The impact of nanocontact on nanowire based nanoelectronics,” Nano Lett., vol. 8, pp. 3146-3150, 2008.
    [5] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, pp. 1897-1899, 2001.
    [6] H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater., vol. 14, pp. 158-160, 2002.
    [7] F. Yang, J. Ma, X. J. Feng, and G. Kong, “Structural and photoluminescence properties of single-crystalline In2O3 films grown by metal organic vapor deposition,” J. Cryst. Growth, vol. 310, pp. 4054-4057, 2008.
    [8] H. A. R. Aliabad, Y. Asadi, and I. Ahmad, “Quasiparticle optoelectronic properties of pure and doped indium oxide,” Opt. Mater., vol. 34, pp. 1406-1414, 2012.
    [9] Z. M. Zeng, K. Wang, Z. X. Zhang, J. J. Chen, and W. L. Zhou, “The detection of H2S at room temperature by using individual indium oxide nanowire transistors,” Nanotech., vol. 20, pp. 045503-045506, 2008.
    [10] N. Singha, A. Ponzoni, R. K. Gupta, P. S. Lee, and E. Comini, “Synthesis of In2O3-ZnO core-shell nanowires and their application in gas sensing,” Sens. Actuator B-Chem., vol. 160, pp. 1346-1351, 2011.
    [11] C. Li, D. H. Zhang, X. L. Liu, S. Han, T. Tang, J. Han, and C. G. Zhou, “In2O3 nanowires as chemical sensors,” Appl. Phys. Lett., vol. 82, pp. 1613-1615, 2008.
    [12] L. Huang, T. M. Liu, H. J. Zhang, W. W. Guo, and W. Zeng, “Hydrothermal synthesis of different TiO2 nanostructures: structure, gowth and gas sensor properties,” Adv. Mater., vol. 23, pp. 2024-2029, 2012.
    [13] A. Hazra, S. Das, J. Kanungo, C. K. Sarkar, and S. Basu,“Studies on a resistive gas sensor based on sol-gel grown nanocrystalline p-TiO2 thin film for fast hydrogen detection,” Sens. Actuator B-Chem., vol. 183, pp. 87-95, 2013.
    [14] J. Archana, M. Navaneethan, Y. Hayakawa, “Hydrothermal growth of monodispersed rutile TiO2 nanorods and functional properties,” Mater. Lett., vol. 98, pp. 38-41, 2013.
    [15] Q. Geng, X. H. Lin, R. R. Si, X. Chen, W. X. Dai, and X. Z. Fu, “The correlation between the ethylene response and its oxidation over TiO2 under UV irradiation,” Sens. Actuator B-Chem., vol. 174, pp. 449-457, 2012.
    [16] L. Gu, K. B. Zheng, Y. Zhou, J. Li, X. L. Mo, G. R. Patzke, and G. R. Chen, “Hydrothermal growth of monodispersed rutile TiO2 nanorods and functional properties,” Sens. Actuator B-Chem., vol. 159, pp. 1-7, 2011.
    [17] W. P. Liao and J. J. Wu, “Wet chemical route to hierarchical TiO2 nanodendrite/nanoparticle composite anodes for dye-sensitized solar cells,” J. Mater. Chem., vol. 21, pp. 9255-9262, 20011.
    [18] T. Y. Tsai, S. J. Chang, W. Y. Weng, C. L. Hsu, S. H. Wang, C. J. Chiu, T. J. Hsueh, and S. P. Chang, “A visible-blind TiO2 nanowire photodetector,” J. Electrochem. Soc., Vol. 159, pp. J132-J135, 2014.
    [19] A. Nikfarjam and N. Salehifar, “Improvement in gas-sensing properties of TiO2nanofiber sensor by UV irradiation,” Sens. Actuator B-Chem., vol. 211, pp. 146-156, 2015.
    [20] D. A. H. Hanaor, C. C. Sorrell, “Synthesis and characterization of TiO2 nanotubes for humidity sensing,” J. Mater. Sci., vol. 46, pp. 855-874, 2011.
    [21] Y. H. Gui, S. M. Li, J. P. Xu , and C. Li, “Study on TiO2-doped ZnO thick film gas sensors enhanced by UV light at room temperature,” Microelectron. J., vol. 39, pp. 1120-1125, 2008.
    [22] J. Moon, J. A. Park, S. J. Lee, T. Zyung, and I. D. Kim,“Pd-doped TiO2 nanofiber networks for gas sensor applications,” Sens. Actuator B-Chem., vol. 149, pp. 301-305, 2010.
    [23] P. Q. Hu, G. J. Du, W. J. Zhou, J. J. Cui, J. J. Lin, H. Liu, D. Liu, J. Y. Wang, and S. W. Chen, “Enhancement of ethanol vapor sensing of TiO2 nanobelts by surface engineering,” ACS Appl. Mater. Interfaces, vol. 2, pp. 3263-3269, 2010.
    [24] A, Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, “Detection of CO and O2 Using Tin Oxide Nanowire Sensors,” Adv. Mater., vol. 15, pp. 997-1000, 2003.
    [25] B. Timmer, W. V. D. Olthuis, and A. Berg, “Ammonia sensors and their applications-a review,” Sens. Actuator B-Chem., vol. 107, pp. 666-677, 2005.
    [26] L. Gangloff, E. Minoux, K. B. K. Teo, P. Vincent, V. T. Semet, V. T. Binh, M. H. Yang, I. Y. Y. Bu, R. G. Lacerda, G. Pirio, J. P. Schnell, D. Pribat, D. G. Hasko, G. A. J. Amaratunga, W. I. Milne, and P. Legagneux, “Self-aligned, gated arrays of individual nanotube and nanowire Emitters,” Nano Lett., vol. 4, pp. 1575-1579, 2004.
    [27] F. S. Baker, J. Williams, and A. R. Osborn, “Field emission from carbon fibres: A new electron source,” Nature, vol. 239, pp. 96-97, 1972.
    [28] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett., vol. 81, pp. 3648-3650, 2002.
    [29] Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, V. B. C. Tan, J. T. L. Thong, and C. H. Sow, “Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films,” Nanotechnology, vol. 16, pp. 88-92, 2005.
    [30] H. B. Jia, Y. Zhang, X. H. Chen, J. Shu, X. H. Luo, Z. S. Zhang, and D. P. Yu, “Efficient field emission from single crystalline indium oxide pyramids,” Appl. Phys. Lett., vol. 82, pp. 4146-4148, 2003.
    [31] J. Zhou, S. Z. Deng, N. S. Xu, J. Chen, and J. C. She, “Synthesis and field-emission properties of aligned MoO3 nanowires,” Appl. Phys. Lett., vol. 83, pp. 2653-2655, 2003.
    [32] Y. J. Chen, Q. H. Li, Y. X. Liang, T. H. Wang, Q. Zhao, and D. P. Yu, “Field-emission from long SnO2 nanobelt arrays,” Appl. Phys. Lett., vol. 85, pp. 5682-5684, 2004.
    [33] W. Loeb, “Sugar decomposition III. electrolysis of dextrose,” Biochem. Z., vol. 17, pp. 132-144, 1909.
    [34] L. C. Jr and C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. N.Y. Acad. Sci., vol. 102, pp. 29-45 1962.
    [35] H. Wroblowa, B. J. Piersma, and J. O. Bockris, “Studies of the mechanism of the anodic oxidation of ethylene in acid and alkaline media,” J. Electroanal. Chem., vol. 6, pp. 401-416, 1963.
    [36] J. O. Bockris, B. J. Piersma, and E. Gileadi, “Anodic oxidation of cellulose and lower carbohydrates,” Electrochim. Acta, vol. 9, pp. 1329-1332, 1964.
    [37] Q. Yi, W. Huang, W. Yu, L. Li, and X. Liu, “Hydrothermal synthesis of titanium-supported nickel nanoflakes for electrochemical oxidation of glucose,” Electroanalysis, vol. 20, pp. 2016-2022, 2008.
    [38] Lu, L. Zhang, F. Qu, H. Lu, X. Zhang, Z. Wu, S. Huan, Q. Wang, G. Shen, and R. Yu, “A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy,” Biosens. Bioelectron., vol. 25, pp. 218-223, 2009.
    [39] W. Wang, L. Zhang, S. Tong, X. Li, and W. Song, “Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination,” Biosens. Bioelectron., vol. 25, pp. 708-714, 2009.
    [40] E. Reitz, W. Jia, M. Gentile, Y. Wang, and Y. Lei, “CuO nanospheres based nonenzymatic glucose sensor,” Electroanalysis, vol. 20, pp. 2482, 2008
    [41] T. Huang, K. Lin, S. Tung, T. Cheng, I. Chang, Y. Hsieh, C. Lee, and H. Chiu, “Glucose sensing by electrochemically grown copper nanobelt electrode,” J. Electroanal. Chem., vol. 636, pp. 123-127, 2009.
    [42] Q. Shen, L. Jiang, H. Zhang, Q. Min, W. Hou, and J. Zhu, “Three-dimensional dendritic Pt nanostructures: sonoelectrochemical synthesis and electrochemical applications,” J. Phys. Chem. C, vol. 112, pp. 16385-16392, 2008.
    [43] Y. Bai, Y. Sun, and C. Sun, “Pt-Pb nanowire array electrode for enzyme-free glucose detection,” Biosensors & Bioelectronics, vol. 24, pp. 579-585, 2008.
    [44] D. Luo, L. Wu, and J. Zhi, “Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing,” ACS Nano, vol. 3, pp. 2121-2128, 2009.
    [45] D. Rathod, C. Dickinson, D. Egan, and E. Dempsey, “Platinum nanoparticle decoration of carbon materials with applications in non-enzymatic glucose sensing,” Sens. Actuator B-Chem., vol. 143, pp. 547-554, 2010.
    [46] Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, and M. M. F. Choi, “An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode,” Analyst, vol. 133, pp.126-132, 2008.
    [47] C. Batchelor-McAuley, G. G. Wildgoose, R. G. Compton, L. Shao, and M. L. H. Green, “Copper oxide nanoparticle impurities are responsible for the electroanalytical detection of glucose seen using multiwalled carbon nanotubes,” Sens. Actuator B-Chem., vol. 132, pp.356-360, 2008.
    [48] K. E. Toghill and R. G. Compton, “Electrochemical nonenzymatic glucose sensors: a perspective and an evaluation,” Int. J. Electrochem. Sci., vol. 5, pp. 1246-1301, 2010.
    Chapter 2
    [1] S. Huang, G. Ou, J. Cheng, H. Li, and W. Pan, “Ultrasensitive visible light photoresponse and electrical transportation properties of nonstoichiometric indium oxide nanowire arrays by electrospinning,” J. Mater. Chem. C., vol. 1, pp. 6463-6470, 2013.
    [2] F. V. Motta , R. C. Lima, A. P. A. Marques, E. R. Leite, J. A. Varela, and E. Longo, “In2O3 microcrystals obtained from rapid calcination in domestic microwave oven,” Mater. Res. Bull., vol. 45, pp. 1703-1706, 2010.
    [3] X. P. Shena, H. J. Liu, X. Fan, Y. Jiang, J. M. Hong, and Z. Xu, “Construction and photoluminescence of In2O3 nanotube array by CVD-template method,” J. Cryst. Growth, vol. 276, pp. 471-477, 2005.
    [4] D. H. Kuo, C. W. Hsu, and C. H. Liang, “CVD growth of In2O3 nanowires using a mixed source of indium and indium chloride,” J. Electrochem. Soc., vol.155, pp. K156-K160, 2008.
    [5] Y. G. Yan, Y. Zhang, H. B. Zeng, J. X. Zhang, X. L. Cao, and L. D. Zhang, “Tunable synthesis of In2O3 nanowires, nanoarrows and nanorods,” Nanotech., vol. 18, pp. 175601-175606, 2007.
    [6] D. Meng, T. Yamazaki, and T. Kikuta, “Preparation and gas sensing properties of undoped and Pd-doped TiO2 nanowires”, Sens. Actuator B-Chem., vol. 190, pp. 838-843, 2014.
    [7] S. H. Wang,T. Y. Tsai, S. J. Chang, W. Y. Weng, S. P. Chang, and C. L. Hsu, “Enhanced field emission of TiO2 nanowires with UV illumination,” IEEE Electron Device Lett., vol. 35, pp. 123-125, 2014.
    [8] M. Zhang, Y. Bando, and K. Wada, “Sol-gel template preparation of TiO2 nanotubes and nanorods,” J. Mater. Sci., vol. 20, pp. 167-170, 2001.
    [9] H. Hayashi and Y. Hakuta, “Hydrothermal synthesis of metal oxide nanoparticles in supercritical water,” Materials, vol. 3, pp. 3794-3817, 2010.
    [10] S. M. Klein, J. H. Choi, F. F. Lange, and Y. Wu, “Synthesis of rutile titania powders: Agglomeration, dissolution, and precipitation phenomena,” J. Mater. Res., vol. 18, pp. 1457-1464, 2003.
    [11] Y. H. Chen, A. Lin, and F. X. Gan, “Preparation of nano-TiO2 from TiCl4 by dialysis hydrolysis,” Powder Technol., vol. 163, pp. 109-116, 2006.
    [12] P. Mitra, A. P. Chatterjee, and H. S. Maiti, “ZnO thin film sensor,” Mater. Lett., vol. 35, pp. 33-38, 1998.
    [13] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett., vol. 84, pp. 3654-3656, 2004.
    [14] M. Batzill and U. Diebold, “Surface studies of gas sensing metal oxides,” Phys. Chem. Chem. Phys., vol. 9, pp. 2307-2318, 2007.
    [15] J. Cerd`a Belmonte, J. Manzano, J. Arbiol, A. Cirera, J. Puigcorb´e, A. Vil`a, N. Sabat´e, I. Gr`acia, C. Can´e, and J. R. Morante, “Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2,” Sens. Actuator B-Chem., vol. 114, pp. 881-892, 2006.
    [16] P. P. Sahay, “Zinc oxide thin film gas sensor for detection of acetone,” J. Mater. Sci., vol. 40, pp. 4383-4385, 2005.
    [17] Y. Wang, J. Chen, and X. Wu, “Preparption and gas-sensing properites of perovskite-type SrFeO3 oxide,” Mater. Lett., vol. 49, pp. 361-364, 2001.
    [18] A. Kolmakov, Y. Zhang, G. Chen, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensor,” Adv. Mater., vol. 12, pp. 997-1000, 2003.
    [19] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991.
    [20] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, “Unraveling nanotubes: field emission from an atomic wire,” Science, vol. 269, pp. 1550-1553, 1995.
    [21] L. A. Chernozatonskii, Y. V. Gulyaev, Z. J. Kosakovskaja, N. I. Sinitsyn, G. V. Torgashov, Y. F. Zakharchenko, E. A. Fedorov, and V. P. Val'chuk, “Electron field emission from nanofilament carbon films,” Chem. Phys. Lett., vol. 233, pp. 63-68, 1995.
    [22] W. A. Deheer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source,” Science, vol. 270, pp. 1179-1180, 1995.
    [23] R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc., vol. 119, pp. 173-181, 1928.
    [24] Y. Alivov, M. Klopfer, and S. Molloi, “Effect of TiO2 nanotube parameters on field emission properties,” Nanotechnology, vol. 21, pp. 505706, 2010.
    [25] V. Filip, D. Nicolaescu, M. Tanemura, and F. Okuyama, “Modeling the electron field emission from carbon nanotube films,” Ultramicroscopy, vol. 89, pp. 39-49, 2001.
    [26] G. P. Beukcma, “Conditioning of a vacuum gap by sparks and ion bombardmemt,” Physica, vol. 61, pp. 259-274, 1971.
    [27] R. E. Burgess and H. Kroemer, “Corrected values of Fowler-Nordheim field emission functions v(y) and s(y),” Phys. Rev. A, vol. 90, p. 515, 1953.
    [28] C. Lea, “Field emission from tetrahedral amorphous carbon,” Appl. Phys. Lett., vol. 71, pp. 1430-1432, 1997.
    [29] D. Pletcher, “Electrocatalysis: present and future,” J. Appl. Electrochem., vol. 14, pp. 403-415, 1984.
    [30] R. R. Adzic, M. W. Hsiao, and E. B. Yeager, “Electrochemical oxidation of glucose on single crystal gold surfaces,” J. Electroanal. Chem. Interfacial Electrochem., vol. 260, pp. 475-485, 1989.
    [31] G. Kokkinidis, J. M. Leger, and C. Lamy, “Structural effects in electrocatalysis: Oxidation of D-glucose on pt (100), (110) and (111) single crystal electrodes and the effect of upd adlayers of Pb, Tl and Bi,” J. Electroanal. Chem. Interfacial Electrochem., vol. 242, pp. 221-242, 1988.
    [32] M. W. Hsiao, R. R. Adzic, and E. G. Yeager, “Electrochemical Oxidation of Glucose on Single Crystal and Polycrystalline Gold Surfaces in Phosphate Buffer,” J. Electrochem. Soc., vol. 143, pp. 759-767, 1996.
    [33] Y. B. Vasiyev, O. A. Khazova, and N. N. Nikolaeva, “Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part II. Effect of the nature of the electrode and the electrooxidation mechanism,” J. Electroanal. Chem. Interfacial Electrochem., vol. 196, pp. 127-144, 1985.
    [34] V. S. Bagotskii and Y. B. Vasilyev, “Mechanism of electro-oxidation of methanol on the platinum electrode,” Electrochim. Acta, vol. 12, pp. 1323-1343, 1967.
    [35] L. A. Larew and D. C. Johnson, “Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media,” J. Electroanal. Chem. Interfacial Electrochem., vol. 262, pp.167-182, 1989.
    [36] L. D. Burke, “Premonolayer oxidation and its role in electrocatalysis,” Electrochim. Acta, vol. 39, pp. 1841-1848, 1994.
    [37] Y. B. Vasil'ev, O. A. Khazova, and N. N. Nikolaeva, “Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part I. Adsorption and oxidation on platinum,” J. Electroanal. Chem. Interfacial Electrochem., vol. 196, pp. 105-125, 1985.
    [38] B. Beden, F. Largeaud, K. B. Kokoh, and C. Lamy, “Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of D-glucose: Identification of reactive intermediates and reaction products,” Electrochim. Acta, vol. 41, pp. 701-709, 1996.
    [39] S. Ernst, J. Heitbaum, and C. H. Hamann, “The electrooxidation of glucose in phosphate buffer solutions: Part I. Reactivity and kinetics below 350 mV/RHE,” J. Electroanal. Chem. Interfacial Electrochem., vol. 100, pp. 173-183, 1979.
    Chapter 3
    F. Yang, J. Ma, X. J. Feng, and L. G. Kong, “Structural and photoluminescence properties of single-crystalline In2O3 films grown by metal organic vapor deposition,” J. Cryst. Growth, vol. 310, pp. 4054-4057, 2008.
    [2] H. A. R. Aliabad, Y. Asadi, and I. Ahmad, “Quasiparticle optoelectronic properties of pure and doped indium oxide,” Opt. Mater., vol. 34, pp. 1406-1414, 2012.
    [3] Z. M. Zeng, K. Wang, Z. X. Zhang, J. J. Chen, and W. L. Zhou “The detection of H2S at room temperature by using individual indium oxide nanowire transistors,” Nanotechnol., vol. 20, pp. 045503-045506, 2008.
    [4] N. Singha, A. Ponzoni, R. K. Gupta, P. S. Lee, and E. Comini, “Synthesis of In2O3-ZnO core-shell nanowires and their application in gas sensing,” Sens. Actuator B-Chem., vol. 160, pp. 1346-1351, 2011.
    [5] C. Li, D. H. Zhang, X. L. Liu, S. Han, T. Tang, J. Han, and C. G. Zhou, “In2O3 nanowires as chemical sensors,” Appl. Phys. Lett., vol. 82, pp. 1613-1615, 2003.
    [6] Y. F. Sun, S. B. Liu, F. L. Meng, J. Y. Liu, Z. Jin, L. T. Kong, and J. H. Liu, “Metal oxide nanostructures and their gas sensing properties: a review,” Sensors, vol. 12, pp. 2610-2631, 2012.
    [7] Y. S. Li, J. Xu, J. F. Chao, D. Chen, S. X. Ouyang, J. H. Ye, and G. Z. Shen, “High-aspect-ratio single-crystalline porous In2O3 nanobelts with enhanced gas sensing properties,” J. Mater. Chem., vol. 21, pp. 12852-12857, 2011.
    [8] S. Yi, S. Q. Tian, D. W. Zeng, K. Xu, S. P. Zhang, and C. S. Xie, “An In2O3 nanowire-like network fabricated on coplanar sensor surface by sacrificial CNTs for enhanced gas sensing performance,” Sens. Actuator B-Chem., vol. 185, pp. 345-353, 2013.
    [9] S. Wang, B. Xiao, T. Yang, P. Wang, C. Xiao, Z. Li, R. Zhao, and M. Zhang, “Enhanced HCHO gas sensing properties by Ag-loaded sunflower-like In2O3 hierarchical nanostructures,” J. Mater. Chem. A, vol. 18, pp. 6598-6604, 2014.
    [10] X. Xu, X. Mei, P. Zhao, P. Sun, Y. Sun, X. Hu, and G. Lu, “One-step synthesis and gas sensing characteristics of urchin-like In2O3,” Sens. Actuator B-Chem., vol. 186, pp. 61-66, 2013.
    [11] X. Xu, P. Zhao, D. Wang, P. Sun, L. You, T. Sun, X. Liang, F. Liu, H. Chen, and G. Lu, “Preparation and gas sensing properties of hierarchical flower-like, In2O3 microspheres,” Sens. Actuator B-Chem., vol. 176, pp. 405-412, 2013.
    [12] X. Xu, X. Li, W. Wang, B. Wang, P. Sun, Y. Sun, and G. Lu, “In2O3 nanoplates: preparation, characterization and gas sensing properties,” RSC Adv., vol. 4, pp. 4831-4835, 2014.
    [13] Y. S. Choe, “New gas sensing mechanism for SnO2 thin-film gas sensors fabricated by using dual ion beam sputtering,” Sens. Actuator B-Chem., vol. 77, pp. 200-208, 2001.
    [14] S. Pitcher, J. A. Thiele, H. L. Ren, and J. F. Vetelino, “Current/voltage characteristics of a semiconductor metal oxide gas sensor,” Sens. Actuator B-Chem., vol. 93, pp. 454-462, 2003.
    [15] S. W. Choi, A. Katoch, J. H. Kim, and S. S. Kim, “Prominent reducing gas-sensing performances of n-SnO2 nanowires by local creation of p-n heterojunctions by functionalization with p-Cr2O3 nanoparticles,” ACS Appl. Mater. Interfaces, vol. 6, pp. 17723-17729, 2014.
    [16] M. Arienzo, L. Armelao, C. M. Mari, S. Polizzi, R. Ruffo, R. Scotti, and F. Morazzoni, “Macroporous WO3 thin films active in nh3 sensing: role of the hosted Cr isolated centers and pt nanoclusters,” J. Am. Chem. Soc., vol. 133, pp. 5296-5304, 2011.
    [17] N. Yamazoe and K. Shimanoe, “Theory of power laws for semiconductor gas sensors,” Sens. Actuator B-Chem., vol. 128, pp. 566-573, 2008.
    [18] M. Kumar, B. R. Mehta, V. N. Singh, R. Chatterjee, S. Milikisiyants, K. V. Lakshmi, and J. P. Singh, “The role of stoichiometry of indium and oxygen on gas sensing properties of indium oxide nanostructures,” Appl. Phys. Lett., vol. 96, pp. 123114, 2010.
    [19] N. Yamazoe and N. Miura, “Some basic aspects of semiconductor gas sensors,” Chemical Sensor Technology, vol. 4, pp. 19-42, 1992.
    [20] H. Ko, S. Park, S. An, and C. Lee, “Enhanced ethanol sensing properties of TeO2/In2O3 core-shell nanorod sensors,” Curr. Appl. Phys., vol. 13, pp. 919-924, 2013.
    [21] S. Park, G. J. Sun, H. Kheel, W. I. Lee, S. Lee, S. B. Choi, and C. Lee, “Synergistic effects of codecoration of oxide nanoparticles on the gas sensing performance of In2O3 nanorods,” Sens. Actuator B-Chem., vol. 227, pp. 591-599, 2016.
    [22] I. D. Kim, A. Rothschild, and H. L. Tuller, “Advances and new directions in gas-sensing devices,” Acta Mater., vol. 61, pp. 94-100, 2013.
    [23] B. R. Mehta and V. N. Singh, “Structural, electrical and gas-sensing properties of In2O3: Ag composite nanoparticle layers,” PRAMANA, vol. 65, pp. 949-958, 2005.
    [24] E. Prabhu, K. I. Gnanasekar, T. R. Ravindran, V. Jayaraman and T. Gnanasekaran, “Changes in carrier concentration and Debye length: experimental evidence from van der Pauw Hall measurements on NOx sensing of In2O3,” J. Electrochem. Soc., vol. 161, pp. B176-B182, 2014.
    [25] R. Q. Xing, L. Xu, J. Song, C. Y. Zhou, Q. L. Li, D. L. Liu, and H. W. Song, “Preparation and gas sensing properties of In2O3/Au nanorods for detection of volatile organic compounds in exhaled breath,” Sci. Rep., vol. 5, pp. 10717, 2015.
    [26] W. Zeng and T. M. Liu, “Gas-sensing properties of SnO2-TiO2-based sensor for volatile organic compound gas and its sensing mechanism,” Physica B, vol. 405, pp. 1345-1348, 2010.
    [27] Z. Lia and Y. Dzenis, “Highly efficient rapid ethanol sensing based on Co-doped In2O3 nanowires,” Talanta, vol. 85, pp. 82-85, 2011.
    [28] W. H. Zhang, W. D. Zhang, and L. Y. Chen, “Highly sensitive detection of explosive triacetone triperoxide by an In2O3 sensor,” Nanotechnology, vol. 21, pp. 315502, 2010.
    [29] H. Ahn, J. H. Park, S. B. Kim, S. H. Jee, Y. S. Yoon, and D. J. Kim, “Vertically aligned ZnO nanorod sensor on flexible substrate for ethanol gas monitoring,” Electrochem. Solid-State Lett., vol. 13, pp. J125-J128, 2010.
    [30] D. Li, B. Zhang, J. Xu, Y. Han, H. Jin, D. Jin, X. Peng, H. Ge, and X. Wang, “Wide bandgap mesoporous hematite nanowire bundles as a sensitive and rapid response ethanol sensor,” Nanotechnology, vol. 27, pp. 185702, 2016.
    [31] H. A. R. Aliabad, Y. Asadi, and I. Ahmad, “Quasiparticle optoelectronic properties of pure and doped indium oxide,” Opt. Mater., vol. 34, pp. 1406-1414, 2012.
    [32] Y. Fan, M. Jin, F. Xianjin, and K. Lingyi, “Structural and photoluminescence properties of single-crystalline In2O3 films grown by metal organic vapor deposition,” J. Cryst. Growth, vol. 310, pp. 4054-4057, 2008.
    [33] S. Q. Li, Y. X. Liang, and T. H. Wang, “Electric-field-aligned vertical growth and field emission properties of In2O3 nanowires,” Appl. Phys. Lett., vol. 87, pp. 143104, 2005.
    [34] P. S. Khiabani, E. Marzbanrad, H. Hassani, and B. Raissi, “Fast Response NO2 Gas Sensor Based on In2O3 Nanoparticles,” J. Am. Ceram. Soc., vol. 96, pp. 2493-2498, 2013.
    [35] D. H. Kim, S. Lee, J. H. Park, J. H. Noh, I. J. Park, W. M. Seong, and K. S. Hong, “Transmittance optimized nb-doped TiO2/Sn-doped In2O3 multilayered photoelectrodes for dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells, vol. 96, pp. 276-280, 2012.
    [36] L. Xu, B. A. Dong, Y. Wang, X. Bai, Q. Liu, and H. W. Song, “Electrospinning preparation and room temperature gas sensing properties of porous In2O3 nanotubes and nanowires,” Sens. Actuator B-Chem., vol. 147, pp. 531-538, 2010.
    [37] G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater., vol. 23, pp. 771-775, 2011.
    [38] J. Yang, C. K. Lin, Z. L. Wang, and J. Lin, “In(OH)3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties,” Inorg. Chem., vol. 45, pp. 8973-8979, 2006.
    [39] K. F. Huo, X. M. Zhang, L. S. Hu, X. Sun, J. Fu, and P. K. Chu, “One-step growth and field emission properties of quasialigned TiO2 nanowire/carbon nanocone core-shell nanostructure arrays on Ti substrates,” Appl. Phys. Lett., vol. 93, pp. 013105, 2008.
    [40] S. Kar, S. Chakrabarti, and S. Chaudhuri, “Morphology dependent field emission from In2O3 nanostructures,” Nanotechnology, vol. 17, pp. 3058-3062, 2006.
    [41] Y. Huang, K. Yu, Z. Xu, and Z. Zhu, “Novel In2O3 nanostructures fabricated by controlling the kinetics factor for field emission display,” Phys. E, vol. 43, pp. 1502-1508, 2011.
    [42] Y. Hao, G. Meng, C. Ye, and L. Zhang, “Supramolecular architectures and helical water chains in cocrystals of melamine and aromatic carboxylic acids,” Cryst. Growth Des., vol. 5, pp. 617-622, 2005.
    [43] Y. G. Yan, Y. Zhang, H. B. Zeng, and L. D. Zhang, “In2O3nanotowers:  controlled synthesis and mechanism analysis,” Cryst. Growth Des., vol. 7, pp. 940-943, 2007.
    [44] R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. Lond. A, vol. 119, pp. 173-181, 1928.
    [45] C. J. Edgcombe, “Experimental and computational study of field emission characteristics from amorphous carbon single nanotips grown by carbon contamination - II. Theory,” Philosophical Magazine Part B, vol. 82, pp. 1009-1026, 2002.
    [46] V. Filip, D. Nicolaescu, M. Tanemura, and F. Okuyama, “Modeling the electron field emission from carbon nanotube films,” Ultramicroscopy, vol. 89, pp. 39-49, 2001.
    [47] B. Wang, X. Jin, Z. B. Ouyang, and P. Xu, “Field emission properties originated from 2D electronics gas successively tunneling for 1D heterostructures of ZnO nanobelts decorated with In2O3 nanoteeth,” J. Nanopart. Res., vol. 14, pp. 1008, 2012.
    [48] Y. Wang, Y. Li, K. Yu, and Z. Zhu, “Controllable synthesis and field emission enhancement of Al2O3 coated In2O3 core-shell nanostructures,” J. Phys. D: Appl. Phys., vol. 44, pp. 105301-105307, 2011.
    [49] B. Wang, Z. Z., H. Wu, and L. Zhu, “Field emission properties and growth mechanism of In2O3 nanostructures,” Nanoscale Res. Lett., vol. 9, pp. 111, 2014.
    [50] J. Lin, Y. Huang, Y. Bando, C. C. Tang, C. Li, and D. Golberg, “Synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures and their electrical and field-emission properties,” Acs Nano, vol. 4, pp. 2452-2458, 2010.
    Chapter 4
    [1] X. D. Bai, E. G. Wang, P. X. Gao, and Z. L. Wang, “Measuring the work function at a nanobelt tip and at a nanoparticle surface,” Nano Lett., vol. 3, pp. 1147-1150, 2003.
    [2] J. Li, M. Chen, S. B. Tian, A. Z. Jin, X. Xia, and C. Z. Gu, “Single-crystal SnO2 nanoshuttles: shape-controlled synthesis, perfect flexibility and high-performance field emission,” Nanotechnology, vol. 22, pp. 505601, 2011.
    [3] Y. Alivov, M. Klopfer, and S. Molloi, “Effect of TiO2 nanotube parameters on field emission properties,” Nanotechnology, vol. 21, pp. 505706, 2010.
    [4] Q. Zhao, J. Gao, R. Zhu, T. Cai, S. Wang, X. Song, Z. Liao, X. Chen, and D. Yu, “Ultrahigh field emission current density from nitrogen-implanted ZnO nanowires,” Nanotechnology, vol. 21, pp. 095701, 2010.
    [5] K. F. Huo, X. M. Zhang, L. S. Hu, X. J. Sun, J. J. Fu, and P. K. Chu, “One-step growth and field emission properties of quasialigned TiO2 nanowire/carbon nanocone core-shell nanostructure arrays on Ti substrates,” Appl. Phys. Lett., vol. 93, pp. 013105, 2008.
    [6] K. S. Yeong, K. H. Maung, and J. T. L. Thong, “The effects of gas exposure and UV illumination on field emission from individual ZnO nanowires,” Nanotechnology, vol. 18, pp. 185608, 2007.
    [7] K. Huo, X. Zhang, J. Fu, G. Qian, Y. Xin, B. Zhu, H. Ni, and P. K. Chu, “ Synthesis and Field Emission Properties of Rutile TiO2 Nanowires Arrays Grown Directly on a Ti Metal Self-Source Substrate,” J. Nanoscience Nanotechnology, vol. 9, pp. 3341-3346, 2009.
    [8] C. Fukuyama, K. Murakami, S. Abo, F. Wakaya, M. Takai, T. Takimoto, Y. Kumashiro, and Y. Takaoka, “Field enhanced surface treatment of needle-shaped TiO2 cathode for improvement in field emission,” J. Vac. Sci. Technol. B, vol. 27, pp. 775-777, 2009.
    [9] R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London, Ser. A, vol. 119, pp. 173-181, 1928.
    [10] M. L. Knotek and P. J. Feibelman, “Ion dsorption by core-hole auger decay,” Phys. Rev. Lett., vol. 40, pp. 964-967, 1978.
    [11] C. L. Hsu and Y. C. Tsai, “Field Emission of ZnO Nanowires in Low Vacuum Following Various Enhancements Made by Exposure to UV,” IEEE Trans. Nanotechnol., vol. 11, pp. 1110-1116, 2012.
    [12] H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett., vol. 90, pp. 201118, 2007.
    [13] H. Huang, Y. Xie, W. Yang, F. Zhang, J. Cai, and Z. Wu, “Low-dark-current TiO2 MSM UV photodetectors with Pt schottky contacts,” IEEE Electron Device Lett., vol. 32 pp. 530-532, 2011.
    [14] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2solar cells with high photon-to-electron conversion efficiencies,” Nature, vol. 395,pp. 583-585, 1998.
    [15] S. H. Wang, T. Y. Tsai, S. J. Chang, W. Y. Weng, S. P. Chang, and C. L. Hsu, “Enhanced field emission of TiO2 nanowires with UV illumination,” IEEE Electron Device Lett., vol. 35,pp. 123-125, 2014.
    [16] T. Y. Tsai, S. J. Chang, W. Y. Weng, C. L. Hsu, S. H. Wang, C. J. Chiu, T. J. Hsueh, and S. P. Chang, “A visible-blind TiO2 nanowire photodetector,” J. Electrochem. Soc., vol.159, pp. J132-J135, 2012.
    [17] H. Miyazaki, T. Hyodo, Y. Shimizu, and M. Egashira, “Hydrogen-sensing properties of anodically oxidized TiO2film sensors - Effects of preparation and pretreatment conditions,” Sens. Actuator B-Chem., vol.108, pp. 467-472, 2005.
    [18] S. Q. Liu and A. C. Chen, “Coadsorption of horseradish peroxidase with thionine on TTiO2: Nanotubes for biosensing,” Langmuir, vol.21, pp. 8409-8413, 2005.
    [19] H. Cao, Y. Zhu, L. Tang, X. Yang, and C. Li, “A glucose biosensor based on immobilization of glucose oxidase into 3D macroporousTiO2,” Electroanalysis, vol.20, pp. 2223-2228, 2008.
    [20] W. Tang, L. Li, and X. Zeng, “A glucose biosensor based on the synergistic action of nanometer-sized TiO2 and polyaniline,” Talanta, vol.131, pp. 417-423, 2015.
    [21] J. Liao, S. Lin, Y. Yang, K. Liu, and W. Du, “Highly selective and sensitive glucose sensors based on organic electrochemical transistors using TiO2nanotube arrays-based gate electrodes,” Sens. Actuator B-Chem., vol.208, pp. 457-463, 2015.
    [22] J. Wang, D.F. Thomas, and A. Chen, “Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks,” Anal. Chem, vol.80, pp. 997-1004, 2008.
    [23] X. Bo, J. Bai, L. Yang, and L. Guo, “The nanocomposite of PtPd nanoparticles/onion-like mesoporous carbon vesicle for nonenzymatic amperometric sensing of glucose,” Sens. Actuator B-Chem., vol.157, pp. 662-668, 2011.
    [24] F. Qu, H. Sun, S. Zhang, J. You, and M. Yang, “Electrochemical sensing platform based on palladium modified ceria nanoparticles,” Electrochim. Acta, vol.61, pp. 173-178, 2012.
    [25] M. M. Khan, S. A. Ansari, J. Lee, and M. H. Cho, “Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor,” Mater. Sci. Eng. C, vol.33, pp. 4692-4699, 2013.
    [26] Z. Yang, Y. Tang, J. Li, Y. Zhang, and X. Hu, “Facile synthesis of tetragonal columnar-shaped TiO2 nanorods for the construction of sensitive electrochemical glucose biosensor,” Biosens. Bioelectron, vol.54, pp. 528-533, 2014.
    [27] Y. N. Xia and N. J. Halas, “Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bull., vol.30, pp. 338-344, 2005.
    [28] S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev., vol.35, pp. 209-217, 2006.
    [29] W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater., vol.19, pp. 3771-3782, 2007.
    [30] A. I. Henry, J. M. Bingham, E. Ringe, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Correlated structure and optical property studies of plasmonic nanoparticles,” J. Phys. Chem. C, vol.115, pp. 9291-9305, 2011.
    [31] N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev., vol.111, pp. 3913-3961, 2011.
    [32] A. K. Sharma and B. D. Gupta, “Fibre-optic sensor based on surface plasmon resonance with Ag-Au alloy nanoparticle films,” Nanotechnology, vol.17, pp. 124-131, 2006.
    [33] W. C. Law, K. T. Yong, A. Baev, and P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement,” Acs Nano, vol.5, pp. 4858-4864, 2011.
    [34] M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D'Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett., vol.11, pp. 438-445, 2011.
    [35] V. Dhas, S. Muduli, W. Lee, S. H. Han, and S. Ogale, “Enhanced conversion efficiency in dye-sensitized solar cells based on ZnO bifunctional nanoflowers loaded with gold nanoparticles,” Appl. Phys. Lett., vol.93, pp. 243108, 2008.
    [36] S. T. Kochuveedu, D. P. Kim, and D. H. Kim, “Surface-plasmon-induced visible light photocatalytic activity of TiO2 nanospheres decorated by Au nanoparticles with controlled configuration,” J. Phys. Chem. C, vol.116, pp. 2500-2506, 2012.
    [37] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B, vol.110, pp. 15700-15707, 2006.
    [38] Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Amer. Chem. Soc., vol.127, pp. 7632-7637, 2005.
    [39] H. Lineweaver and D. Burk, “The determination of enzyme dissociation constants,” J. Amer. Chem. Soc., vol.56, pp. 658-666, 1934.
    [40] C. X. Guo and C. M. Li, “Direct electron transfer of glucose oxidase and biosensing of glucose on hollow sphere-nanostructured conducting polymer/metal oxide composite,” PCCP, vol.12,pp. 12153-12159, 2010.
    [41] D. Pletcher, “Elctrocatalysis: present and future,” J. Appl. Electrochem., vol.14, pp. 403-415, 1984.
    [42] J. Tian, Z. Zhao, A. Kumar, R. I. Boughton, and H. Liu, “Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review,” Chem. Soc. Rev., vol.43, pp. 6920-6937, 2014.
    [43] Z. J. Zhang, Y. B. Xie, Z. Liu, F. Rong, Y. Wang, and D. G. Fu, “Covalently immobilized biosensor based on gold nanoparticles modified TiO2 nanotube arrays,” J. Electroanal. Chem., vol.650, pp. 241-247, 2011.
    [44] C. P. Sousa, A. S. Polo, R. M. Torresi, S. I. de Torresi, and W. A. Alves, “Chemical modification of a nanocrystalline TiO2 film for efficient electric connection of glucose oxidase,” J. Colloid Interface Sci., vol.346, pp. 442-447, 2010.
    [45] M. Tasviri, H. A. Rafiee-Pour, H. Ghourchian, M. R. Gholami, “Amine functionalized TiO2 coated on carbon nanotube as a nanomaterial for direct electrochemistry of glucose oxidase and glucose biosensing,” J. Mol. Catal. B: Enzym., vol.68, pp. 206-210, 2011.
    [46] P. Si, S. Ding, J. Yuan, X. W. Lou, D. H. Kim, “Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing,” Acs Nano., vol.5, pp. 7617-7626, 2011.
    [47] N. Q. Dung, D. Patil, T. T. Duong, H. Jung, D. Kim, and S. G. Yoon, “An amperometric glucose biosensor based on a GOx-entrapped TiO2-SWCNT composite,” Sens. Actuator B-Chem., vol.166, pp. 103-109, 2012.
    [48] S. Y. Lin, S. J. Chang, and T. J. Hsueh, “ZnO nanowires modified with Au nanoparticles for nonenzymatic amperometric sensing of glucose,” Appl. Phys. Lett., vol. 104, pp. 193704, 2014.

    下載圖示 校內:2021-08-01公開
    校外:2021-08-01公開
    QR CODE