| 研究生: |
楊亞欣 Yang, Ya-Sin |
|---|---|
| 論文名稱: |
以整合型物理模式探討降雨引致邊坡淺層破壞之研究 Integrated physically based framework for modeling rainfall-induced shallow landslide |
| 指導教授: |
葉信富
Yeh, Hsin-Fu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 223 |
| 中文關鍵詞: | 未飽和土壤 、基於物理架構 、不確定性 、土壤水分特徵曲線 、水力遲滯 、導電度 、邊坡穩定性 、關鍵區 |
| 外文關鍵詞: | Unsaturated soil, Physically based framework, Uncertainty, Soil water characteristic curve, Hydraulic hysteresis, Electrical conductivity, Slope stability, Critical zone |
| ORCID: | https://orcid.org/0000-0002-1001-9122 |
| 相關次數: | 點閱:154 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
坡地災害一直是山區關注的問題之一,降雨引致淺層滑坡特徵涉及較淺層的土壤範圍,深度在幾公尺範圍內,且涉及未飽和土壤水力行為的變化。降雨入滲引起的非飽和土壤水力行為變化,對土壤潤濕帶發展及邊坡不穩定的驅動具有重要作用。傳統的穩定性分析如極限平衡法等通常以單一的穩定性指標表示(如安全係數),屬於確定性分析且難以表示由降雨入滲引起的吸應力及有效應力變化,以及實際邊坡的破壞面及其幾何形狀。此外,人們已經意識到相同安全係數可能代表不同程度的破壞機率,這取決於與土壤特性相關的可變性及不確定性。
本研究提出一個綜合的基於物理框架評估邊坡穩定性,該框架為基於理查方程式及局部安全係數理論的流體力學模型,可用於計算邊坡內含水量、吸力及局部安全係數分布與變化。本論文由三個主要分析及一個回顧主題組成,分別考慮土壤力學參數的不確定性、水力遲滯及連結土壤基本特性與岩土工程特性,並探討其對降雨引致淺層邊坡穩定性的綜合影響。最後,本研究全面回顧邊坡水文及穩定性與關鍵區科學的進展、相關性及共同挑戰。
本研究表明基於吸力的有效應力可以評估邊坡穩定性,結合基於物理的模型和監測數據能夠改進邊坡穩定性分析。本研究採用的模糊方法可以應對邊坡固有的不確定性,並顯示邊坡破壞機率的變化與淺層邊坡土壤含水量在空間上的重新分布有關。本研究在穩定性分析中考量經常被忽略的土壤水力遲滯,研究表明在不同的水文條件下評估土壤的流體力學變化和改進邊坡破壞預測時需合理的考慮水力遲滯。本研究嘗試根據現場導電度測量和水文參數結合及實驗室數據,將土壤基本特性與岩土工程特性聯繫起來,通過使用基質吸力和導電度數據建立抗剪強度評估框架,現場觀測結果和數值模擬驗證使用導電度評估抗剪強度模型的合適應用。基於邊坡研究的複雜性,跨學科關鍵區科學提供了新的機會,本研究回顧關鍵帶科學在邊坡研究中的進展和應用前景,提出基於過程的綜合監測策略、跨學科的綜合觀點及耦合分析架構與模型,從而貢獻基於監測數據、機制與過程的知識與新見解。
Hillslope hazards have always been one of concerns in mountainous area. Rainfall-induced shallow landslides are typically characterized by shallow soil extent, depths in the range of a few meters, and involve changes in the hydraulic behavior. Variations in the hydraulic behavior of unsaturated soils due to rainfall infiltration play a significant role in the development of soil wetting patterns and the initiation of slope failure. The conventional slope stability analysis such as limit equilibrium just seeks a single general slope stability index (e.g. factor of safety) and is a deterministic analysis. It is almost impossible to identify the change of the suction stress and effective stress owing to rainfall infiltration, and the actual slope failure surface and its geometry. Additionally, it has been recognized that the same value of factor of safety may represent different degree of risk depending on the variability and uncertainty related to soil properties.
This study proposed an integrated physically based framework to assess the slope stability. This framework is a hydromechanical model based on the Richards equation and theory of local factor of safety that can be used to compute the vary of the water content, suction stress, and the distribution of the local factor of safety within the slope. This dissertation consists of three main analyses and one review topic, considering the uncertainty of mechanical parameters, the hydraulic hysteresis and linking the basic properties of the soil with the geotechnical properties, respectively, to explore their comprehensive impact on the slope stability caused by rainfall. Finally, this study comprehensively reviewed the progress in, relevance between, and common challenges to hillslope hydrology, stability, and critical zone science.
This study shows the effective stress based on suction stress can assess hillslope stability. Combining physically based model and monitoring data improves the practical hillslope stability analysis. Fuzzy method adopted in this study can respond to the uncertainties inherent in practical landslide and demonstrates the change in the probability of failure is spatially related to the redistribution of the soil water content in shallow hillslope. This study also incorporated the often overlooked hydraulic hysteresis properties of soils in the stability analysis. The results demonstrate that hydraulic hysteresis must be considered in the evaluation of hydromechanical changes in soils and to improve prediction of slope failure, especially under different hydrological conditions. This study attempted to link soil fundamental properties to geotechnical engineering properties on the basis of in-situ electrical conductivity measurements and hydrological parameters, along with laboratory data. A framework for shear strength assessment has established by using matric suction and electrical conductivity data. In-situ observations and numerical simulations validated the appropriate application of using electrical conductivity to assess shear strength. Based on the complexity of hillslope studies, interdisciplinary critical zone science offers new opportunities. This study reviews the progress and analyzes the application prospects of critical zone science in the study of hillslope and presents a process-based integrated monitoring strategy, an interdisciplinary perspective, and a coupled analytical framework and model, thus contributing new knowledge and insights based on monitoring data, mechanisms, and processes.
1. Abbaszadeh, M.M., Houston, S.L. & Zapata, C.E. 2015. Influence of soil cracking on the soil-water characteristic curve of clay soil. Soils and Rocks, 38, 49-58
2. Abdelbaki, A.M. 2021. Assessing the best performing pedotransfer functions for predicting the soil-water characteristic curve according to soil texture classes and matric potentials. Eur. J. Soil Sci., 72, 154-173, https://doi.org/10.1111/ejss.12959
3. Abella, E.C. & Van Westen, C. 2007. Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides, 4, 311-325, https://doi.org/10.1007/s10346-007-0087-y
4. Agus, S., Leong, E. & Schanz, T. 2003. Assessment of statistical models for indirect determination of permeability functions from soil–water characteristic curves. Géotechnique, 53, 279-282, https://doi.org/10.1680/geot.2003.53.2.279
5. Ahmadabadi, M. & Poisel, R. 2015. Assessment of the application of point estimate methods in the probabilistic stability analysis of slopes. Comput. Geotech., 69, 540-550, https://doi.org/10.1016/j.compgeo.2015.06.016
6. Aleotti, P. 2004. A warning system for rainfall-induced shallow failures. Eng. Geol., 73, 247-265, https://doi.org/10.1016/j.enggeo.2004.01.007
7. Alfieri, L., Salamon, P., Pappenberger, F., Wetterhall, F. & Thielen, J. 2012. Operational early warning systems for water-related hazards in Europe. Environ. Sci. Policy, 21, 35-49, https://doi.org/10.1016/j.envsci.2012.01.008
8. Alonso, E., Gens, A. & Delahaye, C. 2003. Influence of rainfall on the deformation and stability of a slope in overconsolidated clays: a case study. Hydrogeology Journal, 11, 174-192, https://doi.org/10.1007/s10040-002-0245-1
9. Amundson, R., Richter, D.D., Humphreys, G.S., Jobbágy, E.G. & Gaillardet, J. 2007. Coupling between biota and earth materials in the critical zone. Elements, 3, 327-332, https://doi.org/10.2113/gselements.3.5.327
10. Anderson, R.S., Rajaram, H. & Anderson, S.P. 2019. Climate driven coevolution of weathering profiles and hillslope topography generates dramatic differences in critical zone architecture. Hydrological Processes, 33, 4-19, https://doi.org/10.1002/hyp.13307
11. Anderson, S.P., Bales, R.C. & Duffy, C.J. 2008. Critical Zone Observatories: Building a network to advance interdisciplinary study of Earth surface processes. Mineral. Mag., 72, 7-10, https://doi.org/10.1180/minmag.2008.072.1.7
12. Anderson, S.P., von Blanckenburg, F. & White, A.F. 2007. Physical and chemical controls on the critical zone. Elements, 3, 315-319, https://doi.org/10.2113/gselements.3.5.315
13. Angeli, M.G., Pasuto, A. & Silvano, S. 2000. A critical review of landslide monitoring experiences. Eng. Geol., 55, 133-147, https://doi.org/10.1016/S0013-7952(99)00122-2
14. Angermann, L., Jackisch, C., Allroggen, N., Sprenger, M., Zehe, E., Tronicke, J., Weiler, M. & Blume, T. 2017. Form and function in hillslope hydrology: Characterization of subsurface ow based on response observations. Hydrology and Earth System Sciences, 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017
15. Archie, G.E. 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146, 54-62, https://doi.org/10.2118/942054-G
16. Assouline, S., Tessier, D. & Bruand, A. 1998. A conceptual model of the soil water retention curve. Water Resour. Res., 34, 223-231, https://doi.org/10.1029/97WR03039
17. Averjanov, S. 1950. About permeability of surface soils in case of incomplete saturation. English Collection, 7, 19-21
18. Azizi, A., Jommi, C. & Musso, G. 2017. A water retention model accounting for the hysteresis induced by hydraulic and mechanical wetting-drying cycles. Comput. Geotech., 87, 86-98, https://doi.org/10.1016/j.compgeo.2017.02.003
19. Bachmair, S. & Weiler, M. 2011. New Dimensions of Hillslope Hydrology. In: Levia, D.F., Carlyle-Moses, D. & Tanaka, T. (eds.) Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions. Springer, Dordrecht, Netherlands, 455-481.
20. Baecher, G.B. & Christian, J.T. 2005. Reliability and statistics in geotechnical engineering. John Wiley & Sons, Chichester, U.K.
21. Balmford, A., Crane, P., Dobson, A., Green, R.E. & Mace, G.M. 2005. The 2010 challenge: data availability, information needs and extraterrestrial insights. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 221-228, https://doi.org/10.1098/rstb.2004.1599
22. Banwart, S., Bernasconi, S.M., Bloem, J., Blum, W., Brandao, M., Brantley, S., Chabaux, F., Duffy, C., Kram, P. & Lair, G. 2011. Soil processes and functions in critical zone observatories: hypotheses and experimental design. Vadose Zone J., 10, 974-987, https://doi.org/10.2136/vzj2010.0136
23. Banwart, S., Menon, M., Bernasconi, S.M., Bloem, J., Blum, W.E., de Souza, D.M., Davidsdotir, B., Duffy, C., Lair, G.J. & Kram, P. 2012. Soil processes and functions across an international network of Critical Zone Observatories: Introduction to experimental methods and initial results. Comptes Rendus Geoscience, 344, 758-772, https://doi.org/10.1016/j.crte.2012.10.007
24. Bashir, R., Sharma, J. & Stefaniak, H. 2015. Effect of hysteresis of soil-water characteristic curves on infiltration under different climatic conditions. Can. Geotech. J., 53, 273-284, https://doi.org/10.1139/cgj-2015-0004
25. Basile, A., Ciollaro, G. & Coppola, A. 2003. Hysteresis in soil water characteristics as a key to interpreting comparisons of laboratory and field measured hydraulic properties. Water Resour. Res., 39, https://doi.org/10.1029/2003WR002432
26. Baum, R.L., Savage, W.Z. & Godt, J.W. 2002. TRIGRS—a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. US geological survey open-file report, 424, 38
27. Beer, M., Zhang, Y., Quek, S.T. & Phoon, K.K. 2013. Reliability analysis with scarce information: Comparing alternative approaches in a geotechnical engineering context. Struct. Saf., 41, 1-10, https://doi.org/10.1016/j.strusafe.2012.10.003
28. Bellanova, J., Calamita, G., Giocoli, A., Luongo, R., Macchiato, M., Perrone, A., Uhlemann, S. & Piscitelli, S. 2018. Electrical resistivity imaging for the characterization of the Montaguto landslide (southern Italy). Eng. Geol., 243, 272-281, https://doi.org/10.1016/j.enggeo.2018.07.014
29. Beven, K. 2006. Searching for the Holy Grail of scientific hydrology: Q t=(S, R, Δt) A as closure. Hydrology and Earth System Sciences, 10, 609-618, https://doi.org/10.5194/hess-10-609-2006
30. Bhaskar, P., Puppala, A.J. & Boluk, B. 2022. Influence of unsaturated hydraulic properties on transient seepage and stability analysis of an earthen dam. Int. J. Geomech., 22, 04022105, https://doi.org/10.1061/(ASCE)GM.1943-5622.0002414
31. Binley, A., Hubbard, S.S., Huisman, J.A., Revil, A., Robinson, D.A., Singha, K. & Slater, L.D. 2015. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res., 51, 3837-3866, https://doi.org/10.1002/2015WR017016
32. Binley, A.M., Beven, K.J., Calver, A. & Watts, L. 1991. Changing responses in hydrology: assessing the uncertainty in physically based model predictions. Water Resour. Res., 27, 1253-1261, https://doi.org/10.1029/91WR00130
33. Bièvre, G., Jongmans, D., Winiarski, T. & Zumbo, V. 2012. Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps). Hydrological Processes, 26, 2128-2142, https://doi.org/10.1002/hyp.7986
34. Bishop, A.W. 1955. The use of slip circle in the stability analysis of slopes. Géotechnique, 5, 7-11, https://doi.org/10.1680/geot.1955.5.1.7
35. Bishop, A.W. 1959. The principle of effective stress. Teknisk Ukeblad, 106, 859-863
36. Bittelli, M., Valentino, R., Salvatorelli, F. & Pisa, P.R. 2012. Monitoring soil-water and displacement conditions leading to landslide occurrence in partially saturated clays. Geomorphology, 173, 161-173, https://doi.org/10.1016/j.geomorph.2012.06.006
37. Blahůt, J., Jaboyedoff, M. & Thiebes, B. 2021. Novel Approaches in Landslide Monitoring and Data Analysis Special Issue: Trends and Challenges. Applied Sciences, 11, 10453, https://doi.org/10.3390/app112110453
38. Bogaard, T., Guglielmi, Y., Marc, V., Emblanch, C., Bertrand, C. & Mudry, J. 2007. Hydrogeochemistry in landslide research: a review. Bull. Soc. Geol. Fr., 178, 113-126, https://doi.org/10.2113/gssgfbull.178.2.113
39. Bogaard, T.A. & Greco, R. 2016. Landslide hydrology: from hydrology to pore pressure. Wiley Interdiscip. Rev.: Water, 3, 439-459, https://doi.org/10.1002/wat2.1126
40. Borga, M., Dalla Fontana, G., Da Ros, D. & Marchi, L. 1998. Shallow landslide hazard assessment using a physically based model and digital elevation data. Environ. Geol., 35, 81-88, https://doi.org/10.1007/s002540050295
41. Boyd, J., Chambers, J., Wilkinson, P., Peppa, M., Watlet, A., Kirkham, M., Jones, L., Swift, R., Meldrum, P., Uhlemann, S. & Binley, A. 2021. A linked geomorphological and geophysical modelling methodology applied to an active landslide. Landslides, https://doi.org/10.1007/s10346-021-01666-w
42. Brantley, S., White, T., White, A., Sparks, D., Richter, D., Pregitzer, K., Derry, L., Chorover, J., Chadwick, O. & April, R. 2006. Frontiers in exploration of the Critical Zone: Report of a workshop sponsored by the National Science Foundation (NSF), October 24–26, 2005. Newark, DE, 30
43. Brantley, S.L., DiBiase, R.A., Russo, T.A., Shi, Y., Lin, H., Davis, K.J., Kaye, M., Hill, L., Kaye, J. & Eissenstat, D.M. 2016. Designing a suite of measurements to understand the critical zone. Earth Surface Dynamics, 4, 211-235, https://doi.org/10.5194/esurf-4-211-2016
44. Brantley, S.L., Goldhaber, M.B. & Ragnarsdottir, K.V. 2007. Crossing disciplines and scales to understand the critical zone. Elements, 3, 307-314, https://doi.org/10.2113/gselements.3.5.307
45. Brantley, S.L., Lebedeva, M.I., Balashov, V.N., Singha, K., Sullivan, P.L. & Stinchcomb, G. 2017a. Toward a conceptual model relating chemical reaction fronts to water flow paths in hills. Geomorphology, 277, 100-117, https://doi.org/10.1016/j.geomorph.2016.09.027
46. Brantley, S.L., McDowell, W.H., Dietrich, W.E., White, T.S., Kumar, P., Anderson, S.P., Chorover, J., Lohse, K.A., Bales, R.C., Richter, D.D., Grant, G. & Gaillardet, J. 2017b. Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth. Earth Surface Dynamics, 5, 841-860, https://doi.org/10.5194/esurf-5-841-2017
47. Brenning, A. 2005. Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat. Hazards Earth Syst. Sci., 5, 853-862, https://doi.org/10.5194/nhess-5-853-2005
48. Brewer, T.E., Aronson, E.L., Arogyaswamy, K., Billings, S.A., Botthoff, J.K., Campbell, A.N., Dove, N.C., Fairbanks, D., Gallery, R.E. & Hart, S. 2019. Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons. bioRxiv, 647651, https://doi.org/10.1128/mBio.01318-19
49. Brooks, P.D., Chorover, J., Fan, Y., Godsey, S.E., Maxwell, R.M., McNamara, J.P. & Tague, C. 2015. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics. Water Resour. Res., 51, 6973-6987, https://doi.org/10.1002/2015WR017039
50. Brooks, R.H. & Corey, A.T. 1964. Hydraulic properties of porous media and their relation to drainage design. Transactions of the ASAE, 7, 26-0028
51. Broxton, P.D., Troch, P.A. & Lyon, S.W. 2009. On the role of aspect to quantify water transit times in small mountainous catchments. Water Resour. Res., 45, W08427, https://doi.org/10.1029/2008WR007438
52. Brunet, P., Clément, R. & Bouvier, C. 2010. Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT)–A case study in the Cevennes area, France. J. Hydrol., 380, 146-153, https://doi.org/10.1016/j.jhydrol.2009.10.032
53. Brunetti, M.T., Melillo, M., Peruccacci, S., Ciabatta, L. & Brocca, L. 2018. How far are we from the use of satellite rainfall products in landslide forecasting? Remote Sensing of Environment, 210, 65-75, https://doi.org/10.1016/j.rse.2018.03.016
54. Brutsaert, W. 1967. Some Methods of Calculating Unsaturated Permeability. Transactions of the ASAE, 10, 400-0404, https://doi.org/10.13031/2013.39683
55. Bufon, V.B., Lascano, R.J., Bednarz, C., Booker, J.D. & Gitz, D.C. 2012. Soil water content on drip irrigated cotton: comparison of measured and simulated values obtained with the Hydrus 2-D model. Irrigation Science, 30, 259-273, https://doi.org/10.1007/s00271-011-0279-z
56. Bui, D.T., Tuan, T.A., Klempe, H., Pradhan, B. & Revhaug, I. 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13, 361-378, https://doi.org/10.1007/s10346-015-0557-6
57. Burdine, N.T. 1953. Relative permeability calculations from pore size distribution data. Journal of Petroleum Technology, 5, 71-78, https://doi.org/10.2118/225-G
58. Burger, C.A. & Shackelford, C.D. 2001. Evaluating dual porosity of pelletized diatomaceous earth using bimodal soil-water characteristic curve functions. Can. Geotech. J., 38, 53-66, https://doi.org/10.1139/t00-084
59. Burt, T. & Pinay, G. 2005. Linking hydrology and biogeochemistry in complex landscapes. Prog. Phys. Geogr., 29, 297-316, https://doi.org/10.1191/0309133305pp450ra
60. Burton, A., Arkell, T.J. & Bathurst, J. 1998. Field variability of landslide model parameters. Environ. Geol., 35, 100-114, https://doi.org/10.1007/s002540050297
61. Cai, J.S., Yeh, T.C.J., Yan, E.C., Tang, R.X., Hao, Y.H., Huang, S.Y. & Wen, J.C. 2019. Importance of variability in initial soil moisture and rainfalls on slope stability. J. Hydrol., 571, 265-278, https://doi.org/10.1016/j.jhydrol.2019.01.046
62. Caine, N. 1980. The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler, 62, 23-27, https://doi.org/10.1080/04353676.1980.11879996
63. Campbell, J.D. 1973. Pore pressures and volume changes in unsaturated soils(Doctoral Dissertation), University of Illinois a Urbana-Champaign, Urbana, IL, U.S.
64. Canli, E., Loigge, B. & Glade, T. 2018. Spatially distributed rainfall information and its potential for regional landslide early warning systems. Natural Hazards, 91, 103-127, https://doi.org/10.1007/s11069-017-2953-9
65. Cervi, F., Ronchetti, F., Martinelli, G., Bogaard, T. & Corsini, A. 2012. Origin and assessment of deep groundwater inflow in the Ca'Lita landslide using hydrochemistry and in situ monitoring.
66. Chambers, J., Wilkinson, P., Kuras, O., Ford, J., Gunn, D., Meldrum, P., Pennington, C., Weller, A., Hobbs, P. & Ogilvy, R. 2011. Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphology, 125, 472-484, https://doi.org/10.1016/j.geomorph.2010.09.017
67. Chang, J.M., Chen, H., Jou, B.J.D., Tsou, N.C. & Lin, G.W. 2017. Characteristics of rainfall intensity, duration, and kinetic energy for landslide triggering in Taiwan. Eng. Geol., 231, 81-87, https://doi.org/10.1016/j.enggeo.2017.10.006
68. Chang, K.T. & Chiang, S.H. 2009. An integrated model for predicting rainfall-induced landslides. Geomorphology, 105, 366-373, https://doi.org/10.1016/j.geomorph.2008.10.012
69. Chang, K.T., Chiang, S.H. & Lei, F. 2008. Analysing the relationship between typhoon‐triggered landslides and critical rainfall conditions. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 33, 1261-1271
70. Chang, P.Y., Chen, C.c., Chang, S.K., Wang, T.B., Wang, C.Y. & Hsu, S.K. 2012. An investigation into the debris flow induced by Typhoon Morakot in the Siaolin Area, Southern Taiwan, using the electrical resistivity imaging method. Geophys. J. Int., 188, 1012-1024, https://doi.org/10.1111/j.1365-246X.2011.05310.x
71. Chen, C.-Y. 2016. Landslide and debris flow initiated characteristics after typhoon Morakot in Taiwan. Landslides, 13, 153-164, https://doi.org/10.1007/s10346-015-0654-6
72. Chen, C.S. & Chen, Y.L. 2003. The rainfall characteristics of Taiwan. Mon. Weather Rev., 131, 1323-1341, https://doi.org/10.1175/1520-0493(2003)131<1323:TRCOT>2.0.CO;2
73. Chen, C.W., Hung, C., Lin, G.W., Liou, J.J., Lin, S.Y., Li, H.C., Chen, Y.M. & Chen, H. 2022. Preliminary establishment of a mass movement warning system for Taiwan using the soil water index. Landslides, 19, 1779-1789, https://doi.org/10.1007/s10346-021-01844-w
74. Chen, C.W., Oguchi, T., Hayakawa, Y.S., Saito, H. & Chen, H. 2017a. Relationship between landslide size and rainfall conditions in Taiwan. Landslides, 14, 1235-1240, https://doi.org/10.1007/s10346-016-0790-7
75. Chen, C.W., Saito, H. & Oguchi, T. 2015a. Rainfall intensity–duration conditions for mass movements in Taiwan. Prog. Earth Planet. Sci., 2, 1-13, https://doi.org/10.1186/s40645-015-0049-2
76. Chen, H., Dadson, S. & Chi, Y.G. 2006. Recent rainfall-induced landslides and debris flow in northern Taiwan. Geomorphology, 77, 112-125, https://doi.org/10.1016/j.geomorph.2006.01.002
77. Chen, H.W. & Chen, C.Y. 2022. Warning models for landslide and channelized debris flow under climate change conditions in Taiwan. Water, 14, 695, https://doi.org/10.3390/w14050695
78. Chen, J., Yin, J.H. & Lee, C.F. 2003. Upper bound limit analysis of slope stability using rigid finite elements and nonlinear programming. Can. Geotech. J., 40, 742-752
79. Chen, J.C. & Chuang, M.R. 2014. Discharge of landslide-induced debris flows: case studies of Typhoon Morakot in southern Taiwan. Nat. Hazards Earth Syst. Sci., 14, 1719, https://doi.org/10.5194/nhess-14-1719-2014
80. Chen, P., Lu, N., Formetta, G., Godt, J.W. & Wayllace, A. 2018. Tropical storm-Induced landslide potential using combined field monitoring and numerical modeling. J. Geotech. Geoenviron. Eng., 144, 05018002
81. Chen, P., Mirus, B., Lu, N. & Godt, J.W. 2017b. Effect of hydraulic hysteresis on stability of infinite slopes under steady infiltration. J. Geotech. Geoenviron. Eng., 143, 04017041, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001724
82. Chen, P., Wei, C. & Ma, T. 2015b. Analytical model of soil-water characteristics considering the effect of air entrapment. Int. J. Geomech., 15, 04014102, https://doi.org/10.1061/(ASCE)GM.1943-5622.0000462
83. Chen, W., Pourghasemi, H.R., Panahi, M., Kornejady, A., Wang, J., Xie, X. & Cao, S. 2017c. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology, 297, 69-85
84. Chen, W.F. 2013. Limit analysis and soil plasticity. Elsevier, Amsterdam, Netherlands.
85. Chen, Y.C., Chang, K.T., Chiu, Y.J., Lau, S.M. & Lee, H.Y. 2013. Quantifying rainfall controls on catchment-scale landslide erosion in Taiwan. Earth Surface Processes and Landforms, 38, 372-382, https://doi.org/10.1002/esp.3284
86. Cheng, G., Li, X., Zhao, W., Xu, Z., Feng, Q., Xiao, S. & Xiao, H. 2014. Integrated study of the water–ecosystem–economy in the Heihe River Basin. National Science Review, 1, 413-428, https://doi.org/10.1093/nsr/nwu017
87. Cheng, Q., Ng, C.W.W., Zhou, C. & Tang, C.S. 2019. A new water retention model that considers pore non-uniformity and evolution of pore size distribution. Bull. Eng. Geol. Environ., 78, 5055-5065, https://doi.org/10.1007/s10064-019-01476-4
88. Cheng, Y., Lansivaara, T. & Wei, W. 2007. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Computers and Geotechnics, 34, 137-150
89. Chiang, S.H. & Chang, K.T. 2009. Application of radar data to modeling rainfall-induced landslides. Geomorphology, 103, 299-309, https://doi.org/10.1016/j.geomorph.2008.06.012
90. Childs, E.C. & Collis-George, N. 1950. The permeability of porous materials. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 201, 392-405
91. Cho, S.E. 2010. Probabilistic assessment of slope stability that considers the spatial variability of soil properties. J. Geotech. Geoenviron. Eng., 136, 975-984, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000309
92. Cho, S.E. 2017. Prediction of shallow landslide by surficial stability analysis considering rainfall infiltration. Eng. Geol., 231, 126-138, https://doi.org/10.1016/j.enggeo.2017.10.018
93. Chorover, J., Derry, L.A. & McDowell, W.H. 2017. Concentration-discharge relations in the critical zone: implications for resolving critical zone structure, function, and evolution. Water Resour. Res., 53, 8654-8659, https://doi.org/10.1002/2017WR021111
94. Chorover, J., Kretzschmar, R., Garcia-Pichel, F. & Sparks, D.L. 2007. Soil biogeochemical processes within the critical zone. Elements, 3, 321-326, https://doi.org/10.2113/gselements.3.5.321
95. Chorover, J., Troch, P.A., Rasmussen, C., Brooks, P.D., Pelletier, J.D., Breshears, D.D., Huxman, T.E., Kurc, S.A., Lohse, K.A. & McIntosh, J.C. 2011. How water, carbon, and energy drive critical zone evolution: The Jemez–Santa Catalina Critical Zone Observatory. Vadose Zone J., 10, 884-899, https://doi.org/10.2136/vzj2010.0132
96. Christian, J.T., Ladd, C.C. & Baecher, G.B. 1994. Reliability applied to slope stability analysis. Journal of Geotechnical Engineering, 120, 2180-2207, https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2180)
97. Chung, C.C., Lin, C.P., Yang, S.H., Lin, J.Y. & Lin, C.H. 2019. Investigation of non-unique relationship between soil electrical conductivity and water content due to drying-wetting rate using TDR. Eng. Geol., 252, 54-64, https://doi.org/10.1016/j.enggeo.2019.02.025
98. Clark, M.P., Fan, Y., Lawrence, D.M., Adam, J.C., Bolster, D., Gochis, D.J., Hooper, R.P., Kumar, M., Leung, L.R. & Mackay, D.S. 2015. Improving the representation of hydrologic processes in Earth System Models. Water Resour. Res., 51, 5929-5956, https://doi.org/10.1002/2015WR017096
99. Comegna, L., Rianna, G., Lee, S.G. & Picarelli, L. 2016. Influence of the wetting path on the mechanical response of shallow unsaturated sloping covers. Comput. Geotech., 73, 164-169, https://doi.org/10.1016/j.compgeo.2015.11.026
100. Conte, E., Pugliese, L. & Troncone, A. 2022. A Simple Method for Predicting Rainfall-Induced Shallow Landslides. J. Geotech. Geoenviron. Eng., 148, 04022079, https://doi.org/10.1061/(ASCE)GT.1943-5606.0002877
101. Coppola, A. 2000. Unimodal and bimodal descriptions of hydraulic properties for aggregated soils. Soil Sci. Soc. Am. J., 64, 1252-1262, https://doi.org/10.2136/sssaj2000.6441252x
102. Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O. & Agliardi, F. 2014. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ., 73, 209-263, https://doi.org/10.1007/s10064-013-0538-8
103. Cosenza, P., Marmet, E., Rejiba, F., Cui, Y.J., Tabbagh, A. & Charlery, Y. 2006. Correlations between geotechnical and electrical data: A case study at Garchy in France. Journal of Applied Geophysics, 60, 165-178, https://doi.org/10.1016/j.jappgeo.2006.02.003
104. Council, N.R. 2001. Basic research opportunities in earth science. National Academies Press, Washington, DC, U.S.
105. Coutinho, R.Q., Silva, M.M., Santos, A.N.d. & Lacerda, W.A. 2019. Geotechnical characterization and failure mechanism of landslide in granite residual soil. J. Geotech. Geoenviron. Eng., 145, 05019004, https://doi.org/10.1061/(ASCE)GT.1943-5606.0002052
106. Crawford, M.M. & Bryson, L.S. 2017. Assessment of active landslides using field electrical measurements. Eng. Geol., 233, 146-159, https://doi.org/10.1016/j.enggeo.2017.11.012
107. Crawford, M.M. & Bryson, L.S. 2018. Assessment of active landslides using field electrical measurements. Eng. Geol., 233, 146-159, https://doi.org/10.1016/j.enggeo.2017.11.012
108. Crawford, M.M., Bryson, L.S., Woolery, E.W. & Wang, Z. 2018. Using 2-D electrical resistivity imaging for joint geophysical and geotechnical characterization of shallow landslides. Journal of Applied Geophysics, 157, 37-46, https://doi.org/10.1016/j.jappgeo.2018.06.009
109. Crosta, G. & Frattini, P. 2003. Distributed modelling of shallow landslides triggered by intense rainfall. Natural Hazards and Earth System Science, 3, 81-93
110. Cruden, D.M. & Varnes, D.J. 1996. Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. In: Turner, A.K. & Schuster, R.L. (eds.) Transportation Research Board Special Report. Transportation Research Board, Washington, DC, U.S.
111. Culligan, P.J., Whittle, A.J. & Mitchell, J.K. 2019. The Role of Geotechnics in Addressing New World Problems. In: Lu, N. & Mitchell, J.K. (eds.) Geotechnical Fundamentals for Addressing New World Challenges. Springer International Publishing, Cham, 1-27.
112. Dabach, S., Lazarovitch, N., Šimůnek, J. & Shani, U. 2013. Numerical investigation of irrigation scheduling based on soil water status. Irrigation Science, 31, 27-36, https://doi.org/10.1007/s00271-011-0289-x
113. Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.L., Willett, S.D., Hu, J.C., Horng, M.J., Chen, M.C. & Stark, C.P. 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426, 648-651, https://doi.org/10.1038/nature02150
114. Dai, F., Lee, C. & Wang, S. 2003. Characterization of rainfall-induced landslides. International Journal of Remote Sensing, 24, 4817-4834
115. Dai, F.C. & Lee, C.F. 2003. A spatiotemporal probabilistic modelling of storm‐induced shallow landsliding using aerial photographs and logistic regression. Earth Surface Processes and Landforms, 28, 527-545, https://doi.org/10.1002/esp.456Earth
116. Dannowski, G. & Yaramanci, U. 1999. Estimation of water content and porosity using combined radar and geoelectrical measurements. European Journal of environmental and engineering geophysics, 4, 71-85
117. Davidson, J.M., Stone, L.R., Nielsen, D.R. & Larue, M.E. 1969. Field measurement and use of soil‐water properties. Water Resour. Res., 5, 1312-1321, https://doi.org/10.1029/WR005i006p01312
118. De Vita, P., Di Maio, R. & Piegari, E. 2012. A study of the correlation between electrical resistivity and matric suction for unsaturated ash-fall pyroclastic soils in the Campania region (southern Italy). Environ. Earth Sci., 67, 787-798, https://doi.org/10.1007/s12665-012-1531-4
119. Deiana, M., Cervi, F., Pennisi, M., Mussi, M., Bertrand, C., Tazioli, A., Corsini, A. & Ronchetti, F. 2018. Chemical and isotopic investigations (δ 18 O, δ 2 H, 3 H, 87 Sr/86 Sr) to define groundwater processes occurring in a deep-seated landslide in flysch. Hydrogeology Journal, 26, 2669-2691, https://doi.org/10.1007/s10040-018-1807-1
120. Delage, P. & Lefebvre, G. 1984. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation. Can. Geotech. J., 21, 21-35
121. Dhakal, A.S. & Sidle, R.C. 2003. Long‐term modelling of landslides for different forest management practices. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 28, 853-868, https://doi.org/10.1002/esp.499
122. Di Maio, R., De Paola, C., Forte, G., Piegari, E., Pirone, M., Santo, A. & Urciuoli, G. 2020. An integrated geological, geotechnical and geophysical approach to identify predisposing factors for flowslide occurrence. Eng. Geol., 267, 105473, https://doi.org/10.1016/j.enggeo.2019.105473
123. Dietrich, W.E. & Lohse, K. 2014. Common questions of the US NSF–supported Critical Zone Observatories. A Guide Prepared By CZO PIs.
124. Dietrich, W.E. & Montgomery, D.R. 1998. SHALSTAB: a digital terrain model for mapping shallow landslide potential. NCASI (National Council of the Paper Industry for Air and Stream Improvement),Technical Report.
125. Dodagoudar, G. & Venkatachalam, G. 2000. Reliability analysis of slopes using fuzzy sets theory. Comput. Geotech., 27, 101-115, https://doi.org/10.1016/S0266-352X(00)00009-4
126. Dong, W. & Shah, H.C. 1987. Vertex method for computing functions of fuzzy variables. Fuzzy Sets Syst., 24, 65-78, https://doi.org/10.1016/0165-0114(87)90114-X
127. Dubois, D. & Prade, H. 2012. Fundamentals of fuzzy sets. Springer Science & Business Media, New York, NY, U.S.
128. Duncan, J.M. 2000. Factors of Safety and Reliability in Geotechnical Engineering. J. Geotech. Geoenviron. Eng., 126, 307-316, https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307)
129. Duncan, J.M., Wright, S.G. & Brandon, T.L. 2014. Soil strength and slope stability. John Wiley & Sons, Upper Saddle River, NJ, U.S.
130. Durner, W. 1994. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res., 30, 211-223, https://doi.org/10.1029/93WR02676
131. Ebel, B.A., Loague, K. & Borja, R.I. 2010. The impacts of hysteresis on variably saturated hydrologic response and slope failure. Environ. Earth Sci., 61, 1215-1225, https://doi.org/10.1007/s12665-009-0445-2
132. El-Ramly, H., Morgenstern, N. & Cruden, D. 2002. Probabilistic slope stability analysis for practice. Can. Geotech. J., 39, 665-683, https://doi.org/10.1139/t02-034
133. Elshorbagy, A., Corzo, G., Srinivasulu, S. & Solomatine, D. 2010. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 1: Concepts and methodology. Hydrology and Earth System Sciences, 14, 1931-1941, https://doi.org/10.5194/hess-14-1931-2010
134. Falae, P.O., Dash, R.K., Kanungo, D. & Chauhan, P. 2021. Interpretation on water seepage and degree of weathering in a landslide based on pre‐and post‐monsoon electrical resistivity tomography. Near Surf. Geophys., 19, 315-333, https://doi.org/10.1002/nsg.12142
135. Fan, L., Lehmann, P. & Or, D. 2015. Effects of hydromechanical loading history and antecedent soil mechanical damage on shallow landslide triggering. Journal of Geophysical Research: Earth Surface, 120, 1990-2015, https://doi.org/10.1002/2015JF003615
136. Fan, M.-F. 2015. Disaster governance and community resilience: reflections on Typhoon Morakot in Taiwan. J. Environ. Plann. Manage., 58, 24-38, https://doi.org/10.1080/09640568.2013.839444
137. Fan, Y., Clark, M., Lawrence, D.M., Swenson, S., Band, L., Brantley, S.L., Brooks, P., Dietrich, W.E., Flores, A. & Grant, G. 2019. Hillslope hydrology in global change research and Earth system modeling. Water Resour. Res., 55, 1737-1772, https://doi.org/10.1029/2018WR023903
138. Fellenius, W. 1936. Calculation of stability of earth dam. Transactions. 2nd Congress Large Dams, Washington, DC, 1936, 4, 445-462
139. Ferré, T., Bentley, L., Binley, A., Linde, N., Kemna, A., Singha, K., Holliger, K., Huisman, J.A. & Minsley, B. 2009. Critical steps for the continuing advancement of hydrogeophysics. Eos, Transactions American Geophysical Union, 90, 200-200, https://doi.org/10.1029/2009EO230004
140. Field, J.P., Breshears, D.D., Law, D.J., Villegas, J.C., López-Hoffman, L., Brooks, P.D., Chorover, J., Barron-Gafford, G.A., Gallery, R.E. & Litvak, M.E. 2015. Critical Zone services: Expanding context, constraints, and currency beyond ecosystem services. Vadose Zone J., 14, https://doi.org/10.2136/vzj2014.10.0142
141. Flerchinger, G. & Seyfried, M. 2014. Comparison of methods for estimating evapotranspiration in a small rangeland catchment. Vadose Zone J., 13, 1-11, https://doi.org/10.2136/vzj2013.08.0152
142. Fourie, A., Rowe, D. & Blight, G. 1999. The effect of inÆltration on the stability of the slopes of a dry ash dump. Geotechnique, 49, 1-13, https://doi.org/10.1680/geot.1999.49.1.1
143. Fredlund, D.G. & Rahardjo, H. 1993. Soil mechanics for unsaturated soils. 1st ed. John Wiley & Sons, Hoboken, NJ, U.S.
144. Fredlund, D.G., Rahardjo, H. & Fredlund, M.D. 2012. Unsaturated soil mechanics in engineering practice. 1st ed. John Wiley & Sons, Hoboken, NJ, U.S.
145. Fredlund, D.G. & Xing, A. 1994. Equations for the soil-water characteristic curve. Can. Geotech. J., 31, 521-532
146. Fredlund, M.D. 1996. Design of a knowledge-based system for unsaturated soil properties(Master of Science (M.Sc.) Thesis), University of Saskatchewan
147. Fredlund, M.D., Fredlund, D.G. & Wilson, G.W. 2000. An equation to represent grain-size distribution. Can. Geotech. J., 37, 817-827, https://doi.org/10.1139/t00-015
148. Fredlund, M.D., Wilson, G.W. & Fredlund, D.G. 2002. Use of the grain-size distribution for estimation of the soil-water characteristic curve. Can. Geotech. J., 39, 1103-1117, https://doi.org/10.1139/t02-049
149. Froude, M.J. & Petley, D. 2018. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci., 18, 2161-2181, https://doi.org/10.5194/nhess-18-2161-2018
150. Frydman, S. & Baker, R. 2009. Theoretical soil-water characteristic curves based on adsorption, cavitation, and a double porosity model. Int. J. Geomech., 9, 250-257, https://doi.org/10.1061/(ASCE)1532-3641(2009)9:6(250)
151. Fu, Y., Horton, R. & Heitman, J. 2021. Estimation of soil water retention curves from soil bulk electrical conductivity and water content measurements. Soil and Tillage Research, 209, 104948, https://doi.org/10.1016/j.still.2021.104948
152. Gabrielli, C.P., McDonnell, J. & Jarvis, W. 2012. The role of bedrock groundwater in rainfall–runoff response at hillslope and catchment scales. J. Hydrol., 450, 117-133, https://doi.org/10.1016/j.jhydrol.2012.05.023
153. Gallipoli, M., Lapenna, V., Lorenzo, P., Mucciarelli, M., Perrone, A., Piscitelli, S. & Sdao, F. 2000. Comparison of geological and geophysical prospecting techniques in the study of a landslide in southern Italy. European Journal of Environmental and Engineering Geophysics, 4, 117-128
154. Gardner, W. 1958. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil science, 85, 228-232
155. Gariano, S.L., Brunetti, M.T., Iovine, G., Melillo, M., Peruccacci, S., Terranova, O., Vennari, C. & Guzzetti, F. 2015. Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology, 228, 653-665, https://doi.org/10.1016/j.geomorph.2014.10.019
156. Gerke, H.H. 2006. Preferential flow descriptions for structured soils. Journal of Plant Nutrition and Soil Science, 169, 382-400, https://doi.org/10.1002/jpln.200521955
157. Gerscovich, D.M.S., Vargas Jr, E.A. & De Campos, T.M.P. 2006. On the evaluation of unsaturated flow in a natural slope in Rio de Janeiro, Brazil. Eng. Geol., 88, 23-40, https://doi.org/10.1016/j.enggeo.2006.07.008
158. Giasi, C., Masi, P. & Cherubini, C. 2003. Probabilistic and fuzzy reliability analysis of a sample slope near Aliano. Eng. Geol., 67, 391-402, https://doi.org/10.1016/S0013-7952(02)00222-3
159. Giocoli, A., Stabile, T.A., Adurno, I., Perrone, A., Gallipoli, M., Gueguen, E., Norelli, E. & Piscitelli, S. 2015. Geological and geophysical characterization of the southeastern side of the High Agri Valley (southern Apennines, Italy). Nat. Hazards Earth Syst. Sci., 15, https://doi.org/10.5194/nhess-15-315-2015
160. Gitirana, G.d.F.N. & Fredlund, D.G. 2004. Soil-Water Characteristic Curve Equation with Independent Properties. J. Geotech. Geoenviron. Eng., 130, 209-212, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(209)
161. Glade, T., Crozier, M. & Smith, P. 2000. Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model”. Pure and Applied Geophysics, 157, 1059-1079, https://doi.org/10.1007/s000240050017
162. Glover, P.W., Hole, M.J. & Pous, J. 2000. A modified Archie’s law for two conducting phases. Earth and Planetary Science Letters, 180, 369-383, https://doi.org/10.1016/S0012-821X(00)00168-0
163. Gomi, T., Sidle, R.C., Miyata, S., Kosugi, K.i. & Onda, Y. 2008. Dynamic runoff connectivity of overland flow on steep forested hillslopes: Scale effects and runoff transfer. Water Resour. Res., 44, https://doi.org/10.1029/2007WR005894
164. Gong, W., Wang, L., Khoshnevisan, S., Juang, C.H., Huang, H. & Zhang, J. 2014. Robust geotechnical design of earth slopes using fuzzy sets. J. Geotech. Geoenviron. Eng., 141, 04014084, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001196
165. Griffiths, D. & Fenton, G.A. 2004. Probabilistic slope stability analysis by finite elements. J. Geotech. Geoenviron. Eng., 130, 507-518, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(507)
166. Griffiths, D.V., Huang, J. & Fenton, G.A. 2009. Influence of spatial variability on slope reliability using 2-D random fields. J. Geotech. Geoenviron. Eng., 135, 1367-1378, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000099
167. Guo, L. & Lin, H. 2016. Critical zone research and observatories: Current status and future perspectives. Vadose Zone J., 15, https://doi.org/10.2136/vzj2016.06.0050
168. Guzzetti, F., Peruccacci, S., Rossi, M. & Stark, C.P. 2007. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and atmospheric physics, 98, 239-267, https://doi.org/10.1007/s00703-007-0262-7
169. Guzzetti, F., Peruccacci, S., Rossi, M. & Stark, C.P. 2008. The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides, 5, 3-17, https://doi.org/10.1007/s10346-007-0112-1
170. Habibagahi, G., Shahgholian, R. & Sahraeian, S.M.S. 2021. Stochastic Analysis of Rock Slope Stability: Application of Fuzzy Sets Theory. Iran. J. Sci. Technol. Trans. Civ. Eng., 1-13, https://doi.org/10.1007/s40996-020-00525-3
171. Hack, R. 2000. Geophysics for slope stability. Surv. Geophys., 21, 423-448, https://doi.org/10.1023/A:1006797126800
172. Hahm, W.J., Rempe, D.M., Dralle, D.N., Dawson, T.E., Lovill, S.M., Bryk, A.B., Bish, D.L., Schieber, J. & Dietrich, W.E. 2019. Lithologically Controlled Subsurface Critical Zone Thickness and Water Storage Capacity Determine Regional Plant Community Composition. Water Resour. Res., 55, 3028-3055, https://doi.org/10.1029/2018WR023760
173. Haines, W.B. 1930. Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. The Journal of Agricultural Science, 20, 97-116, https://doi.org/10.1017/S002185960008864X
174. Harman, C.J., Lohse, K.A., Troch, P.A. & Sivapalan, M. 2014. Spatial patterns of vegetation, soils, and microtopography from terrestrial laser scanning on two semiarid hillslopes of contrasting lithology. Journal of Geophysical Research: Biogeosciences, 119, 163-180, https://doi.org/10.1002/2013JG002507
175. Harpold, A.A., Marshall, J.A., Lyon, S.W., Barnhart, T., Fisher, B., Donovan, M., Brubaker, K., Crosby, C., Glenn, N.F. & Glennie, C. 2015. Laser vision: lidar as a transformative tool to advance critical zone science. Hydrology and Earth System Sciences, 19, 2881-2897, https://doi.org/10.5194/hess-19-2881-2015
176. Harpold, A.A. & Molotch, N.P. 2015. Sensitivity of soil water availability to changing snowmelt timing in the western US. Geophysical Research Letters, 42, 8011-8020, https://doi.org/10.1002/2015GL065855
177. Harrison, J.P. & Hudson, J.A. 2010. Incorporating parameter variability in rock mechanics analyses: fuzzy mathematics applied to underground rock spalling. Rock mechanics and rock engineering, 43, 219-224, https://doi.org/10.1007/s00603-009-0034-4
178. Hassan, A.M. & Wolff, T.F. 1999. Search algorithm for minimum reliability index of earth slopes. J. Geotech. Geoenviron. Eng., 125, 301-308, https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4(301)
179. He, J., Qiu, H., Qu, F., Hu, S., Yang, D., Shen, Y., Zhang, Y., Sun, H. & Cao, M. 2021. Prediction of spatiotemporal stability and rainfall threshold of shallow landslides using the TRIGRS and Scoops3D models. Catena, 197, 104999, https://doi.org/10.1016/j.catena.2020.104999
180. Hedayati, M., Ahmed, A., Hossain, M., Hossain, J. & Sapkota, A. 2020. Evaluation and Comparison of In-Situ Soil Water Characteristics Curve with Laboratory SWCC Curve. Transp. Geotech., 23, 100351, https://doi.org/10.1016/j.trgeo.2020.100351
181. Henny, L., Thorncroft, C.D., Hsu, H.-H. & Bosart, L.F. 2021. Extreme Rainfall in Taiwan: Seasonal Statistics and Trends. J. Clim., 34, 4711-4731, https://doi.org/10.1175/JCLI-D-20-0999.1
182. Herckenrath, D., Fiandaca, G., Auken, E. & Bauer-Gottwein, P. 2013. Sequential and joint hydrogeophysical inversion using a field-scale groundwater model with ERT and TDEM data. Hydrology and Earth System Sciences, 17, 4043-4060, https://doi.org/10.5194/hess-17-4043-2013
183. Highland, L. & Bobrowsky, P.T. 2008. The landslide handbook: a guide to understanding landslides. US Geological Survey Reston, Reston, Virginia, U.S.
184. Hillel, D. 1980. Fundamentals of Soil Physics. 1st ed. Academic Press, New York, NY, U.S.
185. Hojat, A., Arosio, D., Ivanov, V.I., Longoni, L., Papini, M., Scaioni, M., Tresoldi, G. & Zanzi, L. 2019. Geoelectrical characterization and monitoring of slopes on a rainfall-triggered landslide simulator. Journal of Applied Geophysics, 170, 103844, https://doi.org/10.1016/j.jappgeo.2019.103844
186. Holmes, J., Chambers, J., Wilkinson, P., Meldrum, P., Cimpoiaşu, M., Boyd, J., Huntley, D., Williamson, P., Gunn, D., Dashwood, B., Whiteley, J., Watlet, A., Kirkham, M., Sattler, K., Elwood, D., Sivakumar, V. & Donohue, S. 2022. Application of petrophysical relationships to electrical resistivity models for assessing the stability of a landslide in British Columbia, Canada. Eng. Geol., 301, 106613, https://doi.org/10.1016/j.enggeo.2022.106613
187. Hong, H. & Roh, G. 2008. Reliability evaluation of earth slopes. J. Geotech. Geoenviron. Eng., 134, 1700-1705, https://doi.org/10.1061/(ASCE)1090-0241(2008)134:12(1700)
188. Hong, Y., Adler, R.F., Negri, A. & Huffman, G.J. 2007. Flood and landslide applications of near real-time satellite rainfall products. Natural Hazards, 43, 285-294, https://doi.org/10.1007/s11069-006-9106-x
189. Hopp, L. & McDonnell, J.J. 2009. Connectivity at the hillslope scale: Identifying interactions between storm size, bedrock permeability, slope angle and soil depth. J. Hydrol., 376, 378-391, https://doi.org/10.1016/j.jhydrol.2009.07.047
190. Houston, S.L. 2019. It is Time to Use Unsaturated Soil Mechanics in Routine Geotechnical Engineering Practice. J. Geotech. Geoenviron. Eng., 145, 02519001, https://doi.org/10.1061/(ASCE)GT.1943-5606.0002044
191. Hsiao, E.C., Schuster, M., Juang, C.H. & Kung, G.T. 2008. Reliability analysis and updating of excavation-induced ground settlement for building serviceability assessment. J. Geotech. Geoenviron. Eng., 134, 1448-1458, https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1448)
192. Hsu, M., Howitt, R. & Miller, F. 2015. Procedural vulnerability and institutional capacity deficits in post-disaster recovery and reconstruction: Insights from Wutai Rukai experiences of Typhoon Morakot. Human Organization, 308-318, https://doi.org/10.17730/0018-7259-74.4.308
193. Hu, G.R., Li, X.Y. & Yang, X.F. 2020. The impact of micro-topography on the interplay of critical zone architecture and hydrological processes at the hillslope scale: Integrated geophysical and hydrological experiments on the Qinghai-Tibet Plateau. J. Hydrol., 583, 124618, https://doi.org/10.1016/j.jhydrol.2020.124618
194. Huang, F., Chen, J., Liu, W., Huang, J., Hong, H. & Chen, W. 2022. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology, 408, 108236, https://doi.org/10.1016/j.geomorph.2022.108236
195. Hurrell, J.W., Holland, M.M., Gent, P.R., Ghan, S., Kay, J.E., Kushner, P.J., Lamarque, J.-F., Large, W.G., Lawrence, D. & Lindsay, K. 2013. The community earth system model: a framework for collaborative research. Bulletin of the American Meteorological Society, 94, 1339-1360, https://doi.org/10.1175/BAMS-D-12-00121.1
196. Husein Malkawi, A.I., Hassan, W.F. & Abdulla, F.A. 2000. Uncertainty and reliability analysis applied to slope stability. Struct. Saf., 22, 161-187, https://doi.org/10.1016/S0167-4730(00)00006-0
197. Imani, P., Tian, G., Hadiloo, S. & Abd El-Raouf, A. 2021. Application of combined electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) methods to investigate Xiaoshan District landslide site: Hangzhou, China. Journal of Applied Geophysics, 184, 104236, https://doi.org/10.1016/j.jappgeo.2020.104236
198. Ivanov, V., Arosio, D., Tresoldi, G., Hojat, A., Zanzi, L., Papini, M. & Longoni, L. 2020. Investigation on the role of water for the stability of shallow landslides—Insights from experimental tests. Water, 12, 1203, https://doi.org/10.3390/w12041203
199. Iverson, R.M. 2000. Landslide triggering by rain infiltration. Water Resour. Res., 36, 1897-1910, https://doi.org/10.1029/2000WR900090
200. Iyer, K.K.R., Joseph, J., Shetty, R. & Singh, D.N. 2018. Some investigations to quantify hysteresis associated with water retention behaviour of fine-grained soils. Geomech. Geoeng., 13, 264-275, https://doi.org/10.1080/17486025.2018.1445872
201. Jackisch, C., Angermann, L., Allroggen, N., Sprenger, M., Blume, T., Tronicke, J. & Zehe, E. 2017. Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures. Hydrology and Earth System Sciences, 21, 3749-3775, https://doi.org/10.5194/hess-21-3749-2017
202. Jakob, M., Hungr, O. & Jakob, D.M. 2005. Debris-flow hazards and related phenomena. Springer, Berlin, Germany.
203. Janbu, N. 1954. Application of composite slip surface for stability analysis. Proceedings of European Conference on Stability of Earth Slopes, Sweden, 3, 43-49
204. Jansen, B., Kalbitz, K. & McDowell, W.H. 2014. Dissolved organic matter: Linking soils and aquatic systems. Vadose Zone J., 13, 1-4, https://doi.org/10.2136/vzj2014.05.0051
205. Jaynes, D. 1984. Comparison of soil-water hysteresis models. J. Hydrol., 75, 287-299, https://doi.org/10.1016/0022-1694(84)90054-4
206. Jeremić, B. 2000. Finite element methods for 3D slope stability analysis. In: Griffiths, D.V., Fenton, G.A. & Martin, T.R. (eds.) Slope Stability 2000. American Society of Civil Engineers, Denver, Colorado, U.S., 224-238.
207. Jia, G., Tang, Q. & Xu, X. 2020. Evaluating the performances of satellite-based rainfall data for global rainfall-induced landslide warnings. Landslides, 17, 283-299, https://doi.org/10.1007/s10346-019-01277-6
208. Jiang, S.H., Li, D.Q., Cao, Z.J., Zhou, C.B. & Phoon, K.K. 2015. Efficient System Reliability Analysis of Slope Stability in Spatially Variable Soils Using Monte Carlo Simulation. J. Geotech. Geoenviron. Eng., 141, 04014096, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001227
209. Jiang, S.H., Li, D.Q., Zhang, L.M. & Zhou, C.B. 2014. Slope reliability analysis considering spatially variable shear strength parameters using a non-intrusive stochastic finite element method. Eng. Geol., 168, 120-128, https://doi.org/10.1016/j.enggeo.2013.11.006
210. Johari, A. & Fooladi, H. 2020. Comparative study of stochastic slope stability analysis based on conditional and unconditional random field. Comput. Geotech., 125, 103707, https://doi.org/10.1016/j.compgeo.2020.103707
211. Johnson, M.S. & Lehmann, J. 2006. Double-funneling of trees: Stemflow and root-induced preferential flow. Ecoscience, 13, 324-333, https://doi.org/10.2980/i1195-6860-13-3-324.1
212. Jongmans, D. & Garambois, S. 2007. Geophysical investigation of landslides: a review. Bull. Soc. Geol. Fr., 178, 101-112, https://doi.org/10.2113/gssgfbull.178.2.101
213. Jotisankasa, A., Vathananukij, H. & Coop, M.R. 2009. Soil-water retention curves of some silty soils and their relations to fabrics. Taylor and Francis, London, U.K.
214. Juang, C.H., Jhi, Y.Y. & Lee, D.H. 1998. Stability analysis of existing slopes considering uncertainty. Eng. Geol., 49, 111-122, https://doi.org/10.1016/S0013-7952(97)00078-1
215. Köhne, J.M., Köhne, S. & Šimůnek, J. 2009. A review of model applications for structured soils: a) Water flow and tracer transport. Journal of contaminant hydrology, 104, 4-35, https://doi.org/10.1016/j.jconhyd.2008.10.002
216. Kachanoski, R., Wesenbeeck, I.V. & Gregorich, E. 1988. Estimating spatial variations of soil water content using noncontacting electromagnetic inductive methods. Can. J. Soil Sci., 68, 715-722, https://doi.org/10.4141/cjss88-069
217. Kanda, E.K., Senzanje, A. & Mabhaudhi, T. 2020. Soil water dynamics under Moistube irrigation. Physics and Chemistry of the Earth, Parts A/B/C, 115, 102836, https://doi.org/10.1016/j.pce.2020.102836
218. Kang, F., Xu, Q. & Li, J. 2016. Slope reliability analysis using surrogate models via new support vector machines with swarm intelligence. Applied Mathematical Modelling, 40, 6105-6120, https://doi.org/10.1016/j.apm.2016.01.050
219. Katsura, S.y., Kosugi, K.i., Yamakawa, Y. & Mizuyama, T. 2014. Field evidence of groundwater ridging in a slope of a granite watershed without the capillary fringe effect. J. Hydrol., 511, 703-718, https://doi.org/10.1016/j.jhydrol.2014.02.021
220. Kawai, K., Kato, S. & Karube, D. 2020. The model of water retention curve considering effects of void ratio. In: Rahardjo, H., Toll, D.G. & Leong, E.C. (eds.) Unsaturated soils for Asia. CRC Press, Rotterdam, Nederland, 329-334.
221. Keller, C.K. 2019. Carbon exports from terrestrial ecosystems: a critical-zone framework. Ecosystems, 1-15, https://doi.org/10.1007/s10021-019-00375-9
222. Khorshidi, M., Lu, N., Akin, I.D. & Likos, W.J. 2017. Intrinsic relationship between specific surface area and soil water retention. J. Geotech. Geoenviron. Eng., 143, 04016078, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001572
223. Kienzler, P.M. & Naef, F. 2008. Subsurface storm flow formation at different hillslopes and implications for the ‘old water paradox’. Hydrological Processes: An International Journal, 22, 104-116, https://doi.org/10.1002/hyp.6687
224. Kim, H., Dietrich, W.E., Thurnhoffer, B.M., Bishop, J.K. & Fung, I.Y. 2017a. Controls on solute concentration‐discharge relationships revealed by simultaneous hydrochemistry observations of hillslope runoff and stream flow: The importance of critical zone structure. Water Resour. Res., 53, 1424-1443, https://doi.org/10.1002/2016WR019722
225. Kim, H., Prezzi, M. & Salgado, R. 2017b. Calibration of Whatman Grade 42 filter paper for soil suction measurement. Can. J. Soil Sci., 97, 93-98, https://doi.org/10.1139/cjss-2016-0064
226. Kim, J., Hwang, W. & Kim, Y. 2018. Effects of hysteresis on hydro-mechanical behavior of unsaturated soil. Eng. Geol., 245, 1-9, https://doi.org/10.1016/j.enggeo.2018.08.004
227. Kim, J., Jeong, S., Park, S. & Sharma, J. 2004. Influence of rainfall-induced wetting on the stability of slopes in weathered soils. Eng. Geol., 75, 251-262, https://doi.org/10.1016/j.enggeo.2004.06.017
228. King, E.K. & Pett-Ridge, J.C. 2018. Reassessing the dissolved molybdenum isotopic composition of ocean inputs: The effect of chemical weathering and groundwater. Geology, 46, 955-958, https://doi.org/10.1130/G45124.1
229. Kong, L., Sayem, H.M. & Tian, H. 2017. Influence of drying–wetting cycles on soil-water characteristic curve of undisturbed granite residual soils and microstructure mechanism by nuclear magnetic resonance (NMR) spin-spin relaxation time (T2) relaxometry. Can. Geotech. J., 55, 208-216,
230. https://doi.org/10.1139/cgj-2016-0614
231. Kool, J. & Parker, J.C. 1987. Development and evaluation of closed‐form expressions for hysteretic soil hydraulic properties. Water Resour. Res., 23, 105-114, https://doi.org/10.1029/WR023i001p00105
232. Korup, O., Densmore, A.L. & Schlunegger, F. 2010. The role of landslides in mountain range evolution. Geomorphology, 120, 77-90, https://doi.org/10.1016/j.geomorph.2009.09.017
233. Kosugi, K. 1996. Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour. Res., 32, 2697-2703, https://doi.org/10.1029/96WR01776
234. Kosugi, K.i., Uchida, T. & Mizuyama, T. 2004. Numerical calculation of soil pipe flow and its effect on water dynamics in a slope. Hydrological Processes, 18, 777-789, https://doi.org/10.1002/hyp.1367
235. Kouli, M., Loupasakis, C., Soupios, P., Rozos, D. & Vallianatos, F. 2014. Landslide susceptibility mapping by comparing the WLC and WofE multi-criteria methods in the West Crete Island, Greece. Environ. Earth Sci., 72, 5197-5219, https://doi.org/10.1007/s12665-014-3389-0
236. Kowalsky, M.B., Finsterle, S., Peterson, J., Hubbard, S., Rubin, Y., Majer, E., Ward, A. & Gee, G. 2005. Estimation of field‐scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data. Water Resour. Res., 41, https://doi.org/10.1029/2005WR004237
237. Krabbenhoft, K., Lyamin, A.V., Hjiaj, M. & Sloan, S.W. 2005. A new discontinuous upper bound limit analysis formulation. International Journal for Numerical Methods in Engineering, 63, 1069-1088, https://doi.org/10.1002/nme.1314
238. Kristo, C., Rahardjo, H. & Satyanaga, A. 2017. Effect of variations in rainfall intensity on slope stability in Singapore. International Soil and Water Conservation Research, 5, 258-264, https://doi.org/10.1016/j.iswcr.2017.07.001
239. Kristo, C., Rahardjo, H. & Satyanaga, A. 2019. Effect of hysteresis on the stability of residual soil slope. International Soil and Water Conservation Research, 7, 226-238, https://doi.org/10.1016/j.iswcr.2019.05.003
240. Kuo, C.W. & Brierley, G. 2014. The influence of landscape connectivity and landslide dynamics upon channel adjustments and sediment flux in the Liwu Basin, Taiwan. Earth Surface Processes and Landforms, 39, 2038-2055, https://doi.org/10.1002/esp.3598
241. Kuo, Y.S., Tsai, Y.J., Chen, Y.S., Shieh, C.L., Miyamoto, K. & Itoh, T. 2013. Movement of deep-seated rainfall-induced landslide at Hsiaolin Village during Typhoon Morakot. Landslides, 10, 191-202, https://doi.org/10.1007/s10346-012-0315-y
242. Lai, Y.C. 2014. Controlling complex, non-linear dynamical networks. National Science Review, 1, 339-341, https://doi.org/10.1093/nsr/nwu023
243. Lanni, C., McDonnell, J., Hopp, L. & Rigon, R. 2013. Simulated effect of soil depth and bedrock topography on near‐surface hydrologic response and slope stability. Earth Surface Processes and Landforms, 38, 146-159, https://doi.org/10.1002/esp.3267
244. Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Rizzo, E. & Sdao, F. 2005. 2D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, southern Italy. Geophysics, 70, B11-B18, https://doi.org/10.1190/1.1926571
245. Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Sdao, F. & Rizzo, E. 2003. High-resolution geoelectrical tomographies in the study of Giarrossa landslide (southern Italy). Bull. Eng. Geol. Environ., 62, 259-268, https://doi.org/10.1007/s10064-002-0184-z
246. Le, T.M.H., Gallipoli, D., Sanchez, M. & Wheeler, S.J. 2012. Stochastic analysis of unsaturated seepage through randomly heterogeneous earth embankments. International Journal for Numerical and Analytical Methods in Geomechanics, 36, 1056-1076, https://doi.org/10.1002/nag.1047
247. Lebourg, T., Binet, S., Tric, E., Jomard, H. & El Bedoui, S. 2005. Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide. Terra Nova, 17, 399-406, https://doi.org/10.1111/j.1365-3121.2005.00623.x
248. Lee, C.T. 2009. Review and Prospect on Landslide and Debris Flow Hazard Analysis. Taiwan Public Engineering Journal, 5, 1-29 (in Chinese)
249. Lee, S., Ryu, J.H., Min, K. & Won, J.S. 2003. Landslide susceptibility analysis using GIS and artificial neural network. Earth Surface Processes and Landforms, 28, 1361-1376, https://doi.org/10.1002/esp.593
250. Lehmann, P., Gambazzi, F., Suski, B., Baron, L., Askarinejad, A., Springman, S.M., Holliger, K. & Or, D. 2013. Evolution of soil wetting patterns preceding a hydrologically induced landslide inferred from electrical resistivity survey and point measurements of volumetric water content and pore water pressure. Water Resour. Res., 49, 7992-8004, https://doi.org/10.1002/2013WR014560
251. Lehmann, P., Hinz, C., McGrath, G., Tromp-van Meerveld, H. & McDonnell, J.J. 2007. Rainfall threshold for hillslope outflow: an emergent property of flow pathway connectivity. Hydrology and Earth System Sciences, 11, 1047-1063, https://doi.org/10.5194/hess-11-1047-2007
252. Lerouge, C., Debure, M., Henry, B., Fernandez, A.M., Blessing, M., Proust, E., Madé, B. & Robinet, J.C. 2020. Origin of dissolved gas (CO2, O2, N2, alkanes) in pore waters of a clay formation in the critical zone (Tégulines Clay, France). Appl. Geochem., 116, 104573, https://doi.org/10.1016/j.apgeochem.2020.104573
253. Leshchinsky, B. 2013. Comparison of limit equilibrium and limit analysis for complex slopes. Proceedings of GeoCongress, 1280-1289, https://doi.org/10.1061/9780784412787.129
254. Lesmes, D.P. & Friedman, S.P. 2005. Relationships between the electrical and hydrogeological properties of rocks and soils. Hydrogeophysics. Springer, Dordrecht, 87-128.
255. Leung, A.K. & Ng, C.W.W. 2016. Field investigation of deformation characteristics and stress mobilisation of a soil slope. Landslides, 13, 229-240, https://doi.org/10.1007/s10346-015-0561-x
256. Li, A., Lyamin, A. & Merifield, R. 2009. Seismic rock slope stability charts based on limit analysis methods. Comput. Geotech., 36, 135-148, https://doi.org/10.1016/j.compgeo.2008.01.004
257. Li, D.Q., Xiao, T., Cao, Z.J., Phoon, K.K. & Zhou, C.B. 2016. Efficient and consistent reliability analysis of soil slope stability using both limit equilibrium analysis and finite element analysis. Applied Mathematical Modelling, 40, 5216-5229, https://doi.org/10.1016/j.apm.2015.11.044
258. Li, H.C., Hsieh, L.S., Chen, L.C., Lin, L.Y. & Li, W.S. 2014a. Disaster investigation and analysis of Typhoon Morakot. Journal of the Chinese Institute of Engineers, 37, 558-569, https://doi.org/10.1080/02533839.2012.736771
259. Li, K.S. & Lumb, P. 1987. Probabilistic design of slopes. Can. Geotech. J., 24, 520-535, https://doi.org/10.1139/t87-068
260. Li, L., Wang, Y., Zhang, L., Choi, C. & Ng, C.W.W. 2019. Evaluation of critical slip surface in limit equilibrium analysis of slope stability by smoothed particle hydrodynamics. Int. J. Geomech., 19, 04019032, https://doi.org/10.1061/(ASCE)GM.1943-5622.0001391
261. Li, T., Liu, G., Wang, C., Wang, X. & Li, Y. 2020. The Probability and Sensitivity Analysis of Slope Stability Under Seepage Based on Reliability Theory. Geotech. Geol. Eng., 1-11, https://doi.org/10.1007/s10706-020-01226-4
262. Li, X., Li, J.H. & Zhang, L.M. 2014b. Predicting bimodal soil–water characteristic curves and permeability functions using physically based parameters. Comput. Geotech., 57, 85-96, https://doi.org/10.1016/j.compgeo.2014.01.004
263. Li, Y. & Vanapalli, S.K. 2022. Models for predicting the soil-water characteristic curves for coarse and fine-grained soils. J. Hydrol., 612, 128248, https://doi.org/10.1016/j.jhydrol.2022.128248
264. Li, Y.H. 1976. Denudation of Taiwan island since the Pliocene epoch. Geology, 4, 105-107, https://doi.org/10.1130/0091-7613(1976)4<105:DOTIST>2.0.CO;2
265. Liang, W.L. 2020. Dynamics of pore water pressure at the soil–bedrock interface recorded during a rainfall-induced shallow landslide in a steep natural forested headwater catchment, Taiwan. J. Hydrol., 587, 125003, https://doi.org/10.1016/j.jhydrol.2020.125003
266. Likos, W.J., Lu, N. & Godt, J.W. 2014. Hysteresis and uncertainty in soil water-retention curve parameters. J. Geotech. Geoenviron. Eng., 140, 04013050, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001071
267. Likos, W.J., Song, X., Xiao, M., Cerato, A. & Lu, N. 2019. Fundamental Challenges in Unsaturated Soil Mechanics. In: Lu, N. & Mitchell, J.K. (eds.) Geotechnical Fundamentals for Addressing New World Challenges. Springer, Cham, Switzerland, 209-236.
268. Likos, W.J. & Yao, J. 2014. Effects of constraints on van Genuchten parameters for modeling soil-water characteristic curves. J. Geotech. Geoenviron. Eng., 140, 06014013, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001168
269. Lim, K., Li, A.J. & Lyamin, A.V. 2015. Three-dimensional slope stability assessment of two-layered undrained clay. Comput. Geotech., 70, 1-17, https://doi.org/10.1016/j.compgeo.2015.07.011
270. Lim, K., Li, A.J., Schmid, A. & Lyamin, A.V. 2017. Slope-stability assessments using finite-element limit-analysis methods. Int. J. Geomech., 17, 06016017, https://doi.org/10.1061/(ASCE)GM.1943-5622.0000715
271. Lin, C.H. & Lin, M.L. 2015. Evolution of the large landslide induced by Typhoon Morakot: a case study in the Butangbunasi River, southern Taiwan using the discrete element method. Eng. Geol., 197, 172-187, https://doi.org/10.1016/j.enggeo.2015.08.022
272. Lin, C.W., Chang, W.S., Liu, S.H., Tsai, T.T., Lee, S.P., Tsang, Y.C., Shieh, C.L. & Tseng, C.M. 2011a. Landslides triggered by the 7 August 2009 Typhoon Morakot in southern Taiwan. Eng. Geol., 123, 3-12, https://doi.org/10.1016/j.enggeo.2011.06.007
273. Lin, G.W. & Chen, H. 2012. The relationship of rainfall energy with landslides and sediment delivery. Eng. Geol., 125, 108-118, https://doi.org/10.1016/j.enggeo.2011.11.010
274. Lin, G.W., Kuo, H.L., Chen, C.W., Wei, L.W. & Zhang, J.M. 2020. Using a tank model to determine hydro-meteorological thresholds for large-scale landslides in Taiwan. Water, 12, 253, https://doi.org/10.3390/w12010253
275. Lin, H. 2003. Hydropedology: Bridging disciplines, scales, and data. Vadose Zone J., 2, 1-11, https://doi.org/10.2136/vzj2003.1000
276. Lin, H., Bouma, J., Pachepsky, Y., Western, A., Thompson, J., Van Genuchten, R., Vogel, H.J. & Lilly, A. 2006. Hydropedology: synergistic integration of pedology and hydrology. Water Resour. Res., 42, https://doi.org/10.1029/2005WR004085
277. Lin, H., Hopmans, J.W. & Richter, D.B. 2011b. Interdisciplinary sciences in a global network of critical zone observatories. Vadose Zone J., 10, 781-785, https://doi.org/10.2136/vzj2011.0084
278. Lin, H.S. 2010. Earth's Critical Zone and hydropedology: concepts, characteristics, and advances. Hydrology and Earth System Sciences, 14, 25, https://doi.org/10.5194/hess-14-25-2010
279. Lin, Q., Lima, P., Steger, S., Glade, T., Jiang, T., Zhang, J., Liu, T. & Wang, Y. 2021. National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data. Geoscience Frontiers, 12, 101248, https://doi.org/10.1016/j.gsf.2021.101248
280. Lin, S., Ke, M. & Lo, C. 2017. Evolution of landslide hotspots in Taiwan. Landslides, 14, 1491-1501, https://doi.org/10.1007/s10346-017-0816-9
281. Lin, Z., Qian, J. & Zhai, Q. 2022. A Novel Hysteretic Soil–Water Retention Model with Contact Angle-Dependent Capillarity. Int. J. Geomech., 22, 06021037, https://doi.org/10.1061/(ASCE)GM.1943-5622.0002284
282. Liu, J., Chen, P. & Li, W. 2018. Assessing hydraulic hysteresis models to characterize unsaturated flow behavior under drying and wetting conditions. Int. J. Geomech., 18, 04018080, https://doi.org/10.1061/(ASCE)GM.1943-5622.0001205
283. Liu, K., Vardon, P.J., Hicks, M.A. & Arnold, P. 2017. Combined effect of hysteresis and heterogeneity on the stability of an embankment under transient seepage. Eng. Geol., 219, 140-150, https://doi.org/10.1016/j.enggeo.2016.11.011
284. Liu, L., Zhang, S., Cheng, Y.-M. & Liang, L. 2019. Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines. Geoscience Frontiers, 10, 671-682, https://doi.org/10.1016/j.gsf.2018.03.013
285. Liu, S. & Shao, L. 2018. Limit equilibrium conditions and stability analysis for soils. GeoShanghai International Conference, 92-100, https://doi.org/10.1007/978-981-13-0125-4_10
286. Liu, S.Y., Shao, L.T. & Li, H.J. 2015. Slope stability analysis using the limit equilibrium method and two finite element methods. Comput. Geotech., 63, 291-298, https://doi.org/10.1016/j.compgeo.2014.10.008
287. Liu, X. & Wang, Y. 2022. Quantifying annual occurrence probability of rainfall-induced landslide at a specific slope. Comput. Geotech., 149, 104877, https://doi.org/10.1016/j.compgeo.2022.104877
288. Liu, Y., Deng, Z. & Wang, X. 2021. The effects of rainfall, soil type and slope on the processes and mechanisms of rainfall-induced shallow landslides. Applied Sciences, 11, 11652, https://doi.org/10.3390/app112411652
289. Low, B. & Tang, W.H. 2007. Efficient spreadsheet algorithm for first-order reliability method. Journal of Engineering Mechanics, 133, 1378-1387, https://doi.org/10.1061/(ASCE)0733-9399(2007)133:12(1378)
290. Low, B.K. 2003. Practical probabilistic slope stability analysis. 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering and 39th U.S. Rock Mechanics Symposium, 2, 2777-2784
291. Low, B.K., Gilbert, R.B. & Wright, S.G. 1998. Slope reliability analysis using generalized method of slices. J. Geotech. Geoenviron. Eng., 124, 350-362, https://doi.org/10.1061/(ASCE)1090-0241(1998)124:4(350)
292. Low, B.K. & Tang, W.H. 1997. Reliability analysis of reinforced embankments on soft ground. Can. Geotech. J., 34, 672-685, https://doi.org/10.1139/t97-032
293. Lu, A., Haung, W.K., Lee, C.F., Wei, L.W., Lin, H.H. & Chi, C.C. 2020a. Combination of rainfall thresholds and susceptibility maps for early warning purposes for shallow landslides at regional scale in Taiwan. In: Casagli, N., Tofani, V., Sassa, K., Bobrowsky, P.T. & Takara, K. (eds.) Understanding and Reducing Landslide Disaster Risk. WLF 2020. ICL Contribution to Landslide Disaster Risk Reduction. Springer, Cham, Switzerland, 217-225.
294. Lu, J., Zhang, Q., Werner, A.D., Li, Y., Jiang, S. & Tan, Z. 2020b. Root-induced changes of soil hydraulic properties–A review. J. Hydrol., 125203, https://doi.org/10.1016/j.jhydrol.2020.125203
295. Lu, N. 2016. Generalized soil water retention equation for adsorption and capillarity. J. Geotech. Geoenviron. Eng., 142, 04016051, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001524
296. Lu, N. 2019. Linking soil water adsorption to geotechnical engineering properties. In: Lu, N. & Mitchell, J.K. (eds.) Geotechnical fundamentals for addressing new world challenges. Springer, Berlin, Germany, 93-139.
297. Lu, N. 2020. Unsaturated Soil Mechanics: Fundamental Challenges, Breakthroughs, and Opportunities. J. Geotech. Geoenviron. Eng., 146, 02520001, https://doi.org/10.1061/(ASCE)GT.1943-5606.0002233
298. Lu, N. & Godt, J. 2008. Infinite slope stability under steady unsaturated seepage conditions. Water Resour. Res., 44, W11404, https://doi.org/10.1029/2008WR006976
299. Lu, N. & Godt, J.W. 2013. Hillslope hydrology and stability. Cambridge University Press, New York, NY, U.S.
300. Lu, N., Godt, J.W. & Wu, D.T. 2010a. A closed‐form equation for effective stress in unsaturated soil. Water Resour. Res., 46, https://doi.org/10.1029/2009WR008646
301. Lu, N. & Kaya, M. 2014. Power law for elastic moduli of unsaturated soil. J. Geotech. Geoenviron. Eng., 140, 46-56, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000990
302. Lu, N., Kaya, M., Collins, B.D. & Godt, J.W. 2013. Hysteresis of unsaturated hydromechanical properties of a silty soil. J. Geotech. Geoenviron. Eng., 139, 507-510, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000786
303. Lu, N., Kaya, M. & Godt, J.W. 2014. Interrelations among the Soil-Water Retention, Hydraulic Conductivity, and Suction-Stress Characteristic Curves. J. Geotech. Geoenviron. Eng., 140, 04014007, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001085
304. Lu, N. & Khorshidi, M. 2015. Mechanisms for Soil-Water Retention and Hysteresis at High Suction Range. J. Geotech. Geoenviron. Eng., 141, 04015032, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001325
305. Lu, N. & Likos, W.J. 2004. Unsaturated soil mechanics. John Wiley & Sons, Hoboken, NJ, U.S.
306. Lu, N. & Likos, W.J. 2006. Suction stress characteristic curve for unsaturated soil. J. Geotech. Geoenviron. Eng., 132, 131-142, https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131)
307. Lu, N., Şener Kaya, B., Wayllace, A. & Godt, J.W. 2012. Analysis of rainfall‐induced slope instability using a field of local factor of safety. Water Resour. Res., 48, https://doi.org/10.1029/2012WR011830
308. Lu, N., Wayllace, A. & Formetta, G. 2016. The Slope Cube Module. Soil Water Retention, LLC: Madison, WI, U.S.
309. Lu, N., Wayllace, A. & Godt, J. 2010b. A hydro‐mechanical model for predicting infiltration‐induced landslides. The 3 rd USGS Modeling Conference, 7-11
310. Lucas, D.R., Fankhauser, K. & Springman, S.M. 2017. Application of geotechnical and geophysical field measurements in an active alpine environment. Eng. Geol., 219, 32-51, https://doi.org/10.1016/j.enggeo.2016.11.018
311. Lumb, P. 1975. Slope failures in Hong Kong. Quarterly Journal of Engineering Geology, 8, 31-65, https://doi.org/10.1144/GSL.QJEG.1975.008.01.02
312. Luo, Y., Lü, Y., Fu, B., Harris, P., Wu, L. & Comber, A. 2019. When multi-functional landscape meets Critical Zone science: advancing multi-disciplinary research for sustainable human well-being. National Science Review, 6, 349-358, https://doi.org/10.1093/nsr/nwy003
313. Luo, Z., Atamturktur, S., Juang, C.H., Huang, H. & Lin, P.S. 2011. Probability of serviceability failure in a braced excavation in a spatially random field: Fuzzy finite element approach. Comput. Geotech., 38, 1031-1040, https://doi.org/10.1016/j.compgeo.2011.07.009
314. Lyamin, A.V. & Sloan, S.W. 2002. Upper bound limit analysis using linear finite elements and non‐linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 26, 181-216, https://doi.org/10.1002/nag.198
315. Ma, R., McBratney, A., Whelan, B., Minasny, B. & Short, M. 2011. Comparing temperature correction models for soil electrical conductivity measurement. Precis. Agric., 12, 55-66, https://doi.org/10.1007/s11119-009-9156-7
316. Maji, V.B. 2017. An insight into slope stability using strength reduction technique. Journal of the Geological Society of India, 89, 77-81, https://doi.org/10.1007/s12594-017-0561-7
317. Malaya, C. & Sreedeep, S. 2012. Critical review on the parameters influencing soil-water characteristic curve. Journal of Irrigation and Drainage Engineering, 138, 55-62, https://doi.org/10.1061/(ASCE)IR.1943-4774.0000371
318. Malvern, L.E. 1969. Introduction to the mechanics of a continuous medium. Prentice-Hall New Jersey, NJ, U.S.
319. Marc, O., Stumpf, A., Malet, J.P., Gosset, M., Uchida, T. & Chiang, S.H. 2018. Initial insights from a global database of rainfall-induced landslide inventories: The weak influence of slope and strong influence of total storm rainfall. Earth Surface Dynamics, 6, 903-922, https://doi.org/10.5194/esurf-6-903-2018
320. Marinho, F.A. 2005. Nature of soil–water characteristic curve for plastic soils. J. Geotech. Geoenviron. Eng., 131, 654-661, https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(654)
321. Marshall, T.J. 1958. A relation between permeability and size distribution of pores. Journal of Soil Science, 9, 1-8, https://doi.org/10.1111/j.1365-2389.1958.tb01892.x
322. Martelloni, G., Segoni, S., Fanti, R. & Catani, F. 2012. Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides, 9, 485-495, https://doi.org/10.1007/s10346-011-0308-2
323. Mateos, R.M., López-Vinielles, J., Poyiadji, E., Tsagkas, D., Sheehy, M., Hadjicharalambous, K., Liscák, P., Podolski, L., Laskowicz, I. & Iadanza, C. 2020. Integration of landslide hazard into urban planning across Europe. Landscape and Urban Planning, 196, 103740, https://doi.org/10.1016/j.landurbplan.2019.103740
324. Matthews, C., Farook, Z. & Helm, P. 2014. Slope stability analysis–limit equilibrium or the finite element method. Ground Engineering, 48, 22-28
325. McDonnell, J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G., Haggerty, R., Hinz, C., Hooper, R., Kirchner, J. & Roderick, M. 2007. Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology. Water Resour. Res., 43, https://doi.org/10.1029/2006WR005467
326. McNamara, J.P., Chandler, D., Seyfried, M. & Achet, S. 2005. Soil moisture states, lateral flow, and streamflow generation in a semi‐arid, snowmelt‐driven catchment. Hydrological Processes: An International Journal, 19, 4023-4038, https://doi.org/10.1002/hyp.5869
327. Medina, V., Hürlimann, M., Guo, Z., Lloret, A. & Vaunat, J. 2021. Fast physically-based model for rainfall-induced landslide susceptibility assessment at regional scale. CATENA, 201, 105213, https://doi.org/10.1016/j.catena.2021.105213
328. Meerveld, I.T.-v. & Weiler, M. 2008. Hillslope dynamics modeled with increasing complexity. J. Hydrol., 361, 24-40, https://doi.org/10.1016/j.jhydrol.2008.07.019
329. Melillo, M., Brunetti, M.T., Peruccacci, S., Gariano, S.L. & Guzzetti, F. 2016. Rainfall thresholds for the possible landslide occurrence in Sicily (Southern Italy) based on the automatic reconstruction of rainfall events. Landslides, 13, 165-172, https://doi.org/10.1007/s10346-015-0630-1
330. Merritt, A.J., Chambers, J.E., Wilkinson, P.B., West, L.J., Murphy, W., Gunn, D. & Uhlemann, S. 2016. Measurement and modelling of moisture—electrical resistivity relationship of fine-grained unsaturated soils and electrical anisotropy. Journal of Applied Geophysics, 124, 155-165, https://doi.org/10.1016/j.jappgeo.2015.11.005
331. Miao, L., Liu, S. & Lai, Y. 2002. Research of soil–water characteristics and shear strength features of Nanyang expansive soil. Eng. Geol., 65, 261-267, https://doi.org/10.1016/S0013-7952(01)00136-3
332. Miguez Macho, G. & Fan, Y. 2012. The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. Journal of Geophysical Research: Atmospheres, 117, https://doi.org/10.1029/2012JD017539
333. Miller, C.J., Yesiller, N., Yaldo, K. & Merayyan, S. 2002. Impact of soil type and compaction conditions on soil water characteristic. J. Geotech. Geoenviron. Eng., 128, 733-742, https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(733)
334. Millington, R. & Quirk, J. 1959. Permeability of porous media. Nature, 183, 387, https://doi.org/10.1038/183387a0
335. Millington, R.J. & Quirk, J.P. 1964. Formation factor and permeability equations. Nature, 202, 143, https://doi.org/10.1038/202143a0
336. Minder, J.R., Roe, G.H. & Montgomery, D.R. 2009. Spatial patterns of rainfall and shallow landslide susceptibility. Water Resour. Res., 45, https://doi.org/10.1029/2008WR007027
337. Minor, J., Pearl, J.K., Barnes, M.L., Colella, T.R., Murphy, P.C., Mann, S. & Barron-Gafford, G.A. 2020. Critical Zone Science in the Anthropocene: Opportunities for biogeographic and ecological theory and praxis to drive earth science integration. Prog. Phys. Geogr.: Earth Environ., 44, 50-69, https://doi.org/10.1177/0309133319864268
338. Mirus, B.B., Smith, J.B. & Baum, R.L. 2017. Hydrologic impacts of landslide disturbances: Implications for remobilization and hazard persistence. Water Resour. Res., 53, 8250-8265, https://doi.org/10.1002/2017WR020842
339. Mojid, M., Rose, D. & Wyseure, G. 2007. A model incorporating the diffuse double layer to predict the electrical conductivity of bulk soil. Eur. J. Soil Sci., 58, 560-572, https://doi.org/10.1111/j.1365-2389.2006.00831.x
340. Montanarella, L. & Panagos, P. 2015. Policy relevance of Critical Zone science. Land Use Policy, 49, 86-91, https://doi.org/10.1016/j.landusepol.2015.07.019
341. Montgomery, D.R. & Dietrich, W.E. 1994. A physically based model for the topographic control on shallow landsliding. Water Resour. Res., 30, 1153-1171, https://doi.org/10.1029/93WR02979
342. Montgomery, D.R., Dietrich, W.E. & Heffner, J.T. 2002. Piezometric response in shallow bedrock at CB1: Implications for runoff generation and landsliding. Water Resour. Res., 38, 10-11-10-18, https://doi.org/10.1029/2002WR001429
343. Montgomery, D.R., Schmidt, K.M., Dietrich, W.E. & McKean, J. 2009. Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability. Journal of Geophysical Research: Earth Surface, 114, https://doi.org/10.1029/2008JF001078
344. Moradi, S., Huisman, J., Class, H. & Vereecken, H. 2018. The effect of bedrock topography on timing and location of landslide initiation using the local factor of safety concept. Water, 10, 1290, https://doi.org/10.3390/w10101290
345. Moraetis, D., Paranychianakis, N.V., Nikolaidis, N.P., Banwart, S.A., Rousseva, S., Kercheva, M., Nenov, M., Shishkov, T., de Ruiter, P. & Bloem, J. 2015. Sediment provenance, soil development, and carbon content in fluvial and manmade terraces at Koiliaris River Critical Zone Observatory. Journal of Soils and Sediments, 15, 347-364, https://doi.org/10.1007/s11368-014-1030-1
346. Morgentern, N. & Price, V. 1965. The analysis of stability of general slip surface. Geotechnique, 15, 79-93
347. Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 513-522, https://doi.org/10.1029/WR012i003p00513
348. Mualem, Y. 1978. Hydraulic conductivity of unsaturated porous media: generalized macroscopic approach. Water Resour. Res., 14, 325-334, https://doi.org/10.1029/WR014i002p00325
349. Mualem, Y. 1986. Hydraulic conductivity of unsaturated soils: prediction and formulas. In: Klute, A. (ed.) Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. American Society of Agronomy and Soil Science Society of America, Madison, WI, U.S., 799-823.
350. Nakhaei, M. & Šimůnek, J. 2014. Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code. J. Hydrol. Hydromech., 62, 7-15, https://doi.org/10.2478/johh-2014-0008
351. Nam, S., Gutierrez, M., Diplas, P., Petrie, J., Wayllace, A., Lu, N. & Muñoz, J.J. 2010. Comparison of testing techniques and models for establishing the SWCC of riverbank soils. Eng. Geol., 110, 1-10, https://doi.org/10.1016/j.enggeo.2009.09.003
352. National Fire Agency, M.O.I. 2022. Natural Disaster Statistics. World Wide Web Address: https://www.nfa.gov.tw/pro/index.php?code=list&ids=385.
353. Naudet, V., Lazzari, M., Perrone, A., Loperte, A., Piscitelli, S. & Lapenna, V. 2008. Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo village (Basilicata, southern Italy). Eng. Geol., 98, 156-167, https://doi.org/10.1016/j.enggeo.2008.02.008
354. Nawari, N. & Liang, R. 2000. Fuzzy-based approach for determination of characteristic values of measured geotechnical parameters. Can. Geotech. J., 37, 1131-1140, https://doi.org/10.1139/t00-025
355. Ng, C.W.W. & Pang, Y.W. 2000. Influence of stress state on soil-water characteristics and slope stability. J. Geotech. Geoenviron. Eng., 126, 157-166, https://doi.org/10.1061/(ASCE)1090-0241(2000)126:2(157)
356. Ng, C.W.W., Xu, J. & Yung, S.Y. 2009. Effects of wetting–drying and stress ratio on anisotropic stiffness of an unsaturated soil at very small strains. Can. Geotech. J., 46, 1062-1076, https://doi.org/10.1139/T09-043
357. Nuth, M. & Laloui, L. 2008. Advances in modelling hysteretic water retention curve in deformable soils. Comput. Geotech., 35, 835-844, https://doi.org/10.1016/j.compgeo.2008.08.001
358. O'loughlin, E.M. 1986. Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour. Res., 22, 794-804, https://doi.org/10.1029/WR022i005p00794
359. Oh, S. & Lu, N. 2015. Slope stability analysis under unsaturated conditions: Case studies of rainfall-induced failure of cut slopes. Eng. Geol., 184, 96-103, https://doi.org/10.1016/j.enggeo.2014.11.007
360. Onyelowe, K.C., Mojtahedi, F.F., Azizi, S., Mahdi, H.A., Sujatha, E.R., Ebid, A.M., Darzi, A.G. & Aneke, F.I. 2022. Innovative Overview of SWRC Application in Modeling Geotechnical Engineering Problems. Designs, 6, 69, https://doi.org/10.3390/designs6050069
361. Operstein, V. & Frydman, S. 2000. The influence of vegetation on soil strength. Proceedings of the Institution of Civil Engineers-Ground Improvement, 4, 81-89, https://doi.org/10.1680/grim.2000.4.2.81
362. Ozturk, U., Bozzolan, E., Holcombe, E.A., Shukla, R., Pianosi, F. & Wagener, T. 2022. How climate change and unplanned urban sprawl bring more landslides. Nature Publishing Group, 262-265.
363. Pack, R.T., Tarboton, D.G. & Goodwin, C.N. 1998. The SINMAP approach to terrain stability mapping. 8th congress of the international association of engineering geology, Vancouver, British Columbia, Canada, 21, 25
364. Palis, E., Lebourg, T., Vidal, M., Levy, C., Tric, E. & Hernandez, M. 2017. Multiyear time-lapse ERT to study short-and long-term landslide hydrological dynamics. Landslides, 14, 1333-1343, https://doi.org/10.1007/s10346-016-0791-6
365. Pang, L., Close, M.E., Watt, J.P. & Vincent, K.W. 2000. Simulation of picloram, atrazine, and simazine leaching through two New Zealand soils and into groundwater using HYDRUS-2D. Journal of Contaminant Hydrology, 44, 19-46, https://doi.org/10.1016/S0169-7722(00)00091-7
366. Park, H.J., Jang, J.Y. & Lee, J.H. 2017. Physically Based Susceptibility Assessment of Rainfall-Induced Shallow Landslides Using a Fuzzy Point Estimate Method. Remote Sens., 9, 487, https://doi.org/10.3390/rs9050487
367. Park, H.J., Jang, J.Y. & Lee, J.H. 2019. Assessment of rainfall-induced landslide susceptibility at the regional scale using a physically based model and fuzzy-based Monte Carlo simulation. Landslides, 16, 695-713, https://doi.org/10.1007/s10346-018-01125-z
368. Park, H.J., Lee, J.H. & Woo, I. 2013. Assessment of rainfall-induced shallow landslide susceptibility using a GIS-based probabilistic approach. Eng. Geol., 161, 1-15, https://doi.org/10.1016/j.enggeo.2013.04.011
369. Park, H.J., Um, J.G., Woo, I. & Kim, J.W. 2012. Application of fuzzy set theory to evaluate the probability of failure in rock slopes. Eng. Geol., 125, 92-101, https://doi.org/10.1016/j.enggeo.2011.11.008
370. Parsekian, A.D., Singha, K., Minsley, B.J., Holbrook, W.S. & Slater, L. 2015. Multiscale geophysical imaging of the critical zone. Reviews of Geophysics, 53, 1-26, https://doi.org/10.1002/2014RG000465
371. Pazzi, V., Morelli, S. & Fanti, R. 2019. A review of the advantages and limitations of geophysical investigations in landslide studies. Int. J. Geophys., 2019, https://doi.org/10.1155/2019/2983087
372. Pedrera-Parrilla, A., Pachepsky, Y.A., Taguas, E.V., Martos-Rosillo, S., Giráldez, J.V. & Vanderlinden, K. 2017. Concurrent temporal stability of the apparent electrical conductivity and soil water content. J. Hydrol., 544, 319-326, https://doi.org/10.1016/j.jhydrol.2016.10.017
373. Pedrycz, W. 1994. Why triangular membership functions? Fuzzy Sets Syst., 64, 21-30, https://doi.org/10.1016/0165-0114(94)90003-5
374. Peng, S.-H. & Lu, S.-C. 2013. FLO-2D simulation of mudflow caused by large landslide due to extremely heavy rainfall in southeastern Taiwan during Typhoon Morakot. Journal of Mountain Science, 10, 207-218, https://doi.org/10.1007/s11629-013-2510-2
375. Perrone, A., Iannuzzi, A., Lapenna, V., Lorenzo, P., Piscitelli, S., Rizzo, E. & Sdao, F. 2004. High-resolution electrical imaging of the Varco d'Izzo earthflow (southern Italy). Journal of Applied Geophysics, 56, 17-29, https://doi.org/10.1016/j.jappgeo.2004.03.004
376. Perrone, A., Lapenna, V. & Piscitelli, S. 2014. Electrical resistivity tomography technique for landslide investigation: A review. Earth Sci. Rev., 135, 65-82, https://doi.org/10.1016/j.earscirev.2014.04.002
377. Petrucci, O. 2022. Landslide fatality occurrence: a systematic review of research published between January 2010 and March 2022. Sustainability, 14, 9346
378. Pham, H.Q., Fredlund, D.G. & Barbour, S.L. 2005. A study of hysteresis models for soil-water characteristic curves. Can. Geotech. J., 42, 1548-1568, https://doi.org/10.1139/t05-071
379. Pham, T.A., Hashemi, A., Sutman, M. & Medero, G.M. 2023. Effect of temperature on the soil–water retention characteristics in unsaturated soils: Analytical and experimental approaches. Soils Found., 63, 101301, https://doi.org/10.1016/j.sandf.2023.101301
380. Phoon, K.-K., Santoso, A. & Quek, S.-T. 2010. Probabilistic analysis of soil-water characteristic curves. J. Geotech. Geoenviron. Eng., 136, 445-455
381. Phoon, K.K. & Kulhawy, F.H. 1999. Characterization of geotechnical variability. Can. Geotech. J., 36, 612-624, https://doi.org/10.1139/t99-038
382. Pinder, G.F. & Gray, W.G. 1977. Finite element simulation in surface and subsurface hydrology. Academic Press New York, NY, U.S.
383. Postance, B., Hillier, J., Dijkstra, T. & Dixon, N. 2018. Comparing threshold definition techniques for rainfall‐induced landslides: A national assessment using radar rainfall. Earth Surface Processes and Landforms, 43, 553-560, https://doi.org/10.1002/esp.4202
384. Qi, C.C. & Tang, X.L. 2018. Slope stability prediction using integrated metaheuristic and machine learning approaches: A comparative study. Computers and Industrial Engineering, 118, 112-122, https://doi.org/10.1016/j.cie.2018.02.028
385. Raghuram, A.S.S., Basha, B.M. & Moghal, A.A.B. 2022. Influence of Fines Content on Stability of Unsaturated Soil Slopes. 145-155, https://doi.org/10.1007/978-981-16-5601-9_14
386. Rahardjo, H., Nio, A.S., Leong, E.C. & Song, N.Y. 2010. Effects of groundwater table position and soil properties on stability of slope during rainfall. J. Geotech. Geoenviron. Eng., 136, 1555-1564, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000385
387. Rahimi, A., Rahardjo, H. & Leong, E.C. 2011. Effect of antecedent rainfall patterns on rainfall-induced slope failure. J. Geotech. Geoenviron. Eng., 137, 483-491, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000451
388. Rajkai, K., Kabos, S. & van Genuchten, M.T. 2004. Estimating the water retention curve from soil properties: comparison of linear, nonlinear and concomitant variable methods. Soil and Tillage Research, 79, 145-152, https://doi.org/10.1016/j.still.2004.07.003
389. Rasmussen, C., Pelletier, J.D., Troch, P.A., Swetnam, T.L. & Chorover, J. 2015. Quantifying topographic and vegetation effects on the transfer of energy and mass to the critical zone. Vadose Zone J., 14, https://doi.org/10.2136/vzj2014.07.0102
390. Rasmussen, C., Troch, P.A., Chorover, J., Brooks, P., Pelletier, J. & Huxman, T.E. 2011. An open system framework for integrating critical zone structure and function. Biogeochemistry, 102, 15-29, https://doi.org/10.1007/s10533-010-9476-8
391. Regmi, N.R., Giardino, J.R., McDonald, E.V. & Vitek, J.D. 2015. A review of mass movement processes and risk in the critical zone of Earth. In: Giardino, J.R. & Houser, C. (eds.) Developments in Earth Surface Processes. Elsevier, 319-362.
392. Reichenbach, P., Rossi, M., Malamud, B.D., Mihir, M. & Guzzetti, F. 2018. A review of statistically-based landslide susceptibility models. Earth Sci. Rev., 180, 60-91, https://doi.org/10.1016/j.earscirev.2018.03.001
393. Reid, M., Baum, R., LaHusen, R. & Ellis, W. 2008. Capturing landslide dynamics and hydrologic triggers using near-real-time monitoring. In Landslides and Engineering Slopes—From the past to the future. Proceedings of the 10th International Symposium on Landslides and Engineered Slopes. Taylor and Francis, London, U.K., 179-191.
394. Rempe, D.M. & Dietrich, W.E. 2018. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl. Acad. Sci. U.S.A., 115, 2664-2669, https://doi.org/10.1073/pnas.1800141115
395. Renalier, F., Jongmans, D., Campillo, M. & Bard, P.Y. 2010. Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation. Journal of Geophysical Research: Earth Surface, 115, https://doi.org/10.1029/2009JF001538
396. Revil, A. & Lu, N. 2013. Unified water isotherms for clayey porous materials. Water Resour. Res., 49, 5685-5699, https://doi.org/10.1002/wrcr.20426
397. Rhoades, J.D., Raats, P.A.C. & Prather, R.J. 1976. Effects of Liquid-phase Electrical Conductivity, Water Content, and Surface Conductivity on Bulk Soil Electrical Conductivity. Soil Sci. Soc. Am. J., 40, 651-655, https://doi.org/10.2136/sssaj1976.03615995004000050017x
398. Rianna, G., Comegna, L., Pagano, L., Picarelli, L. & Reder, A. 2019. The Role of Hydraulic Hysteresis on the Hydrological Response of Pyroclastic Silty Covers. Water, 11, 628
399. Richards, L.A. 1931. Capillary conduction of liquids through porous mediums. Physics, 1, 318-333, https://doi.org/10.1063/1.1745010
400. Richter, D.d. & Billings, S.A. 2015. ‘One physical system’: Tansley's ecosystem as Earth's critical zone. New Phytol., 206, 900-912, https://doi.org/10.1111/nph.13338
401. Richter, D.d. & Mobley, M.L. 2009. Monitoring Earth's critical zone. Science, 326, 1067-1068, https://doi.org/10.1126/science.1179117
402. Riebe, C.S., Hahm, W.J. & Brantley, S.L. 2017. Controls on deep critical zone architecture: A historical review and four testable hypotheses. Earth Surface Processes and Landforms, 42, 128-156, https://doi.org/10.1002/esp.4052
403. Rigon, R., Bertoldi, G. & Over, T.M. 2006. GEOtop: A distributed hydrological model with coupled water and energy budgets. Journal of Hydrometeorology, 7, 371-388, https://doi.org/10.1175/JHM497.1
404. Robinson, D.A., Jackson, B.M., Clothier, B.E., Dominati, E.J., Marchant, S.C., Cooper, D.M. & Bristow, K.L. 2013. Advances in soil ecosystem services: Concepts, models, and applications for earth system life support. Vadose Zone J., 12, https://doi.org/10.2136/vzj2013.01.0027
405. Rodriguez‐Iturbe, I. 2000. Ecohydrology: A hydrologic perspective of climate‐soil‐vegetation dynamies. Water Resour. Res., 36, 3-9, https://doi.org/10.1029/1999WR900210
406. Rosenblueth, E. 1975. Point estimates for probability moments. Proc. Natl. Acad. Sci. U.S.A., 72, 3812-3814, https://doi.org/10.1073/pnas.72.10.3812
407. Russell, A.R. & Buzzi, O. 2012. A fractal basis for soil-water characteristics curves with hydraulic hysteresis. Geotechnique, 62, 269-274, https://doi.org/10.1680/geot.10.P.119
408. Sakaki, T., Limsuwat, A., Cihan, A., Frippiat, C.C. & Illangasekare, T.H. 2012. Water retention in a coarse soil pocket under wetting and drainage cycles. Vadose Zone J., 11, https://doi.org/10.2136/vzj2011.0028
409. Salciarini, D., Godt, J.W., Savage, W.Z., Conversini, P., Baum, R.L. & Michael, J.A. 2006. Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides, 3, 181–194, https://doi.org/10.1007/s10346-006-0037-0
410. Samaniego, L., Kumar, R. & Attinger, S. 2010. Multiscale parameter regionalization of a grid‐based hydrologic model at the mesoscale. Water Resour. Res., 46, https://doi.org/10.1029/2008WR007327
411. Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A. & Richard, G. 2005. Electrical resistivity survey in soil science: a review. Soil and Tillage research, 83, 173-193, https://doi.org/10.1016/j.still.2004.10.004
412. Samui, P. 2008. Slope stability analysis: a support vector machine approach. Environ. Geol., 56, 255, https://doi.org/10.1007/s00254-007-1161-4
413. Sarkar, S. & Kanungo, D.P. 2004. An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogramm. Eng. Remote Sens., 70, 617-625, https://doi.org/10.14358/PERS.70.5.617
414. Saxton, K.E. & Rawls, W.J. 2006. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J., 70, 1569-1578, https://doi.org/10.2136/sssaj2005.0117
415. Scanlan, C. & Hinz, C. 2010. Insights into the processes and effects of root-induced changes to soil hydraulic properties. 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World, 1-6
416. Schaake, J.C., Koren, V.I., Duan, Q.Y., Mitchell, K. & Chen, F. 1996. Simple water balance model for estimating runoff at different spatial and temporal scales. Journal of Geophysical Research: Atmospheres, 101, 7461-7475, https://doi.org/10.1029/95JD02892
417. Scherrer, S. & Naef, F. 2003. A decision scheme to indicate dominant hydrological flow processes on temperate grassland. Hydrological processes, 17, 391-401, https://doi.org/10.1002/hyp.1131
418. Schneider, M. & Goss, K.U. 2011. Temperature dependence of the water retention curve for dry soils. Water Resour. Res., 47, https://doi.org/10.1029/2010WR009687
419. Schrott, L. & Sass, O. 2008. Application of field geophysics in geomorphology: advances and limitations exemplified by case studies. Geomorphology, 93, 55-73, https://doi.org/10.1016/j.geomorph.2006.12.024
420. Schulz, K., Seppelt, R., Zehe, E., Vogel, H.J. & Attinger, S. 2006. Importance of spatial structures in advancing hydrological sciences. Water Resour. Res., 42, https://doi.org/10.1029/2005WR004301
421. Schwartz, B.F., Schreiber, M.E. & Yan, T. 2008. Quantifying field-scale soil moisture using electrical resistivity imaging. J. Hydrol., 362, 234-246, https://doi.org/10.1016/j.jhydrol.2008.08.027
422. Segoni, S., Piciullo, L. & Gariano, S.L. 2018. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides, 15, 1483-1501
423. Seibert, J. & McDonnell, J.J. 2002. On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration. Water Resour. Res., 38, 23-21-23-14, https://doi.org/10.1029/2001WR000978
424. Seki, K. 2007. SWRC fit–a nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure. Hydrology and Earth System Sciences Discussions, 4, 407-437, https://doi.org/10.5194/hessd-4-407-2007
425. Shah, P.H. & Singh, D. 2005. Generalized Archie's law for estimation of soil electrical conductivity. J. ASTM Int., 2, 1-20
426. Shao, W., Bogaard, T., Bakker, M. & Greco, R. 2015. Quantification of the influence of preferential flow on slope stability using a numerical modelling approach. Hydrology and Earth System Sciences, 19, 2197-2212, https://doi.org/10.5194/hess-19-2197-2015
427. Sheets, K.R. & Hendrickx, J.M. 1995. Noninvasive soil water content measurement using electromagnetic induction. Water Resour. Res., 31, 2401-2409, https://doi.org/10.1029/95WR01949
428. Shieh, S. 2000. User’s guide for typhoon forecasting in the Taiwan area (VIII). Central Weather Bureau, Taipei
429. Shou, K.J. & Yang, C.M. 2015. Predictive analysis of landslide susceptibility under climate change conditions—A study on the Chingshui River Watershed of Taiwan. Eng. Geol., 192, 46-62, https://doi.org/10.1016/j.enggeo.2015.03.012
430. Sidle, R.C. & Bogaard, T.A. 2016. Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth Sci. Rev., 159, 275-291, https://doi.org/10.1016/j.earscirev.2016.05.013
431. Sidle, R.C., Hirano, T., Gomi, T. & Terajima, T. 2007. Hortonian overland flow from Japanese forest plantations—an aberration, the real thing, or something in between? Hydrological Processes: An International Journal, 21, 3237-3247, https://doi.org/10.1002/hyp.6876
432. Sidle, R.C. & Ochiai, H. 2006. Landslides: Processes, prediction, and land use. Water Resources Monograph American Geophysical Union, Washington, DC, U.S.
433. Sidle, R.C. & Onda, Y. 2004. Hydrogeomorphology: overview of an emerging science. Hydrological processes, 18, 597-602, https://doi.org/10.1002/hyp.1360
434. Simoni, S., Zanotti, F., Bertoldi, G. & Rigon, R. 2008. Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop‐FS. Hydrological Processes: An International Journal, 22, 532-545, https://doi.org/10.1002/hyp.6886
435. Šimůnek, J., van Genuchten, M.T. & Šejna, M. 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J., 7, 587-600, https://doi.org/10.2136/vzj2007.0077
436. Simunek, J.J., Šejna, M. & Van Genuchten, M. 2012. The HYDRUS-2D software package for simulating water flow and solute transport in two-dimensional variably saturated media, Version 2.0. PC Progress, Prague, Czech Republic.
437. Sivapalan, M. 2006. Pattern, process and function: elements of a unified theory of hydrology at the catchment scale. Encyclopedia of hydrological sciences, https://doi.org/10.1002/0470848944.hsa012
438. Sánchez, M., Arson, C., Gens, A. & Aponte, F. 2016. Analysis of unsaturated materials hydration incorporating the effect of thermo-osmotic flow. Geomechanics for Energy and the Environment, 6, 101-115, https://doi.org/10.1016/j.gete.2016.05.001
439. Soulsby, C., Neal, C., Laudon, H., Burns, D., Mérot, P., Bonell, M., Dunn, S. & Tetzlaff, D. 2008. Catchment data for process conceptualization: simply not enough? Hydrological Processes, 22, 2057-2061, https://doi.org/10.1002/hyp.7068
440. Sparks, D.L. & Banwart, S.A. 2017. Quantifying and managing soil functions in earth’s critical zone: combining experimentation and mathematical modelling. Academic Press, Cambridge, MA, U.S.
441. Springman, S.M., Thielen, A., Kienzler, P. & Friedel, S. 2013. A long-term field study for the investigation of rainfall-induced landslides. Geotechnique, 63, 1177-1193, https://doi.org/10.1680/geot.11.P.142
442. Sreedeep, S. & Singh, D. 2005. A study to investigate the influence of soil properties on suction. J. Test. Eval., 33, 61-66
443. Stieglitz, M., Shaman, J., McNamara, J., Engel, V., Shanley, J. & Kling, G.W. 2003. An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport. Global Biogeochem. Cycles, 17, https://doi.org/10.1029/2003GB002041
444. Stokes, A., Atger, C., Bengough, A.G., Fourcaud, T. & Sidle, R.C. 2009. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant and soil, 324, 1-30, https://doi.org/10.1007/s11104-009-0159-y
445. Stone, M.M., DeForest, J.L. & Plante, A.F. 2014. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory. Soil Biology and Biochemistry, 75, 237-247, https://doi.org/10.1016/j.soilbio.2014.04.017
446. Stone, M.M., Kan, J. & Plante, A.F. 2015. Parent material and vegetation influence bacterial community structure and nitrogen functional genes along deep tropical soil profiles at the Luquillo Critical Zone Observatory. Soil Biology and Biochemistry, 80, 273-282, https://doi.org/10.1016/j.soilbio.2014.10.019
447. Stonestrom, D.A. & Rubin, J. 1989. Water content dependence of trapped air in two soils. Water Resour. Res., 25, 1947-1958, https://doi.org/10.1029/WR025i009p01947
448. Stumpf, A., Malet, J.-P. & Delacourt, C. 2017. Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides. Remote Sensing of Environment, 189, 40-55, https://doi.org/10.1016/j.rse.2016.11.007
449. Suchomel, R. & Mašı´n, D. 2010. Comparison of different probabilistic methods for predicting stability of a slope in spatially variable c–φ soil. Comput. Geotech., 37, 132-140, https://doi.org/10.1016/j.compgeo.2009.08.005
450. Sun, D.a., Wang, L. & Li, L. 2019. Stability of unsaturated soil slopes with cracks under steady-infiltration conditions. Int. J. Geomech., 19, 04019044, https://doi.org/10.1061/(ASCE)GM.1943-5622.0001398
451. Sun, D.M., Zang, Y.G., Feng, P. & Semprich, S. 2016. Quasi-saturated zones induced by rainfall infiltration. Transport in Porous Media, 112, 77-104, https://doi.org/10.1007/s11242-016-0633-y
452. Supper, R., Römer, A., Jochum, B., Bieber, G. & Jaritz, W. 2008. A complex geo-scientific strategy for landslide hazard mitigation–from airborne mapping to ground monitoring. Adv. Geosci., 14, 195-200, https://doi.org/10.5194/adgeo-14-195-2008
453. Tami, D., Rahardjo, H. & Leong, E.C. 2004. Effects of hysteresis on steady-state infiltration in unsaturated slopes. J. Geotech. Geoenviron. Eng., 130, 956-967, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(956)
454. Tang, W.H., Yucemen, M.S. & Ang, A.S. 1976. Probability-based short term design of soil slopes. Can. Geotech. J., 13, 201-215, https://doi.org/10.1139/t76-024
455. Tang, Y., Wu, W., Yin, K., Wang, S. & Lei, G. 2019. A hydro-mechanical coupled analysis of rainfall induced landslide using a hypoplastic constitutive model. Comput. Geotech., 112, 284-292, https://doi.org/10.1016/j.compgeo.2019.04.024
456. Thiebes, B., Bell, R., Glade, T., Jäger, S., Anderson, M. & Holcombe, L. 2013. A WebGIS decision-support system for slope stability based on limit-equilibrium modelling. Eng. Geol., 158, 109-118, https://doi.org/10.1016/j.enggeo.2013.03.004
457. Thirard, G., Grandjean, G., Thiery, Y., Maquaire, O., François, B., Lissak, C. & Costa, S. 2020. Hydrogeological assessment of a deep-seated coastal landslide based on a multi-disciplinary approach. Geomorphology, 371, 107440, https://doi.org/10.1016/j.geomorph.2020.107440
458. Tiranti, D. & Cremonini, R. 2019. Landslide hazard in a changing environment. Front. Earth Sci., 7, 3, https://doi.org/10.3389/feart.2019.00003
459. Tobutt, D.C. 1982. Monte Carlo simulation methods for slope stability. Computers and Geosciences, 8, 199-208, https://doi.org/10.1016/0098-3004(82)90021-8
460. Toker, N.K., Germaine, J.T., Sjoblom, K.J. & Culligan, P.J. 2004. A new technique for rapid measurement of continuous soil moisture characteristic curves. Géotechnique, 54, 179-186, https://doi.org/10.1680/geot.2004.54.3.179
461. Troch, P.A., Carrillo, G.A., Heidbüchel, I., Rajagopal, S., Switanek, M., Volkmann, T.H. & Yaeger, M. 2009. Dealing with landscape heterogeneity in watershed hydrology: A review of recent progress toward new hydrological theory. Geography Compass, 3, 375-392, https://doi.org/10.1111/j.1749-8198.2008.00186.x
462. Troncone, A. 2005. Numerical analysis of a landslide in soils with strain-softening behaviour. Geotechnique, 55, 585-596, https://doi.org/10.1680/geot.2005.55.8.585
463. Troncone, A., Pugliese, L., Lamanna, G. & Conte, E. 2021. Prediction of rainfall-induced landslide movements in the presence of stabilizing piles. Eng. Geol., 288, 106143, https://doi.org/10.1016/j.enggeo.2021.106143
464. Tsai, F., Hwang, J.-H., Chen, L.-C. & Lin, T.-H. 2010. Post-disaster assessment of landslides in southern Taiwan after 2009 Typhoon Morakot using remote sensing and spatial analysis. Nat. Hazards Earth Syst. Sci., 10, 2179, https://doi.org/10.5194/nhess-10-2179-2010
465. Tsai, Y.J., Syu, F.T., Shieh, C.L., Chung, C.R., Lin, S.S. & Yin, H.Y. 2021. Framework of Emergency Response System for Potential Large-Scale Landslide in Taiwan. Water, 13, 712, https://doi.org/10.3390/w13050712
466. Tsaparas, I., Rahardjo, H., Toll, D.G. & Leong, E.C. 2002. Controlling parameters for rainfall-induced landslides. Comput. Geotech., 29, 1-27, https://doi.org/10.1016/S0266-352X(01)00019-2
467. Tsou, C.-Y., Feng, Z.-Y. & Chigira, M. 2011. Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan. Geomorphology, 127, 166-178, https://doi.org/10.1016/j.geomorph.2010.12.013
468. Tuller, M. & Or, D. 2005. Water films and scaling of soil characteristic curves at low water contents. Water Resour. Res., 41, https://doi.org/10.1029/2005WR004142
469. Uhlemann, S., Chambers, J., Wilkinson, P., Maurer, H., Merritt, A., Meldrum, P., Kuras, O., Gunn, D., Smith, A. & Dijkstra, T. 2017. Four‐dimensional imaging of moisture dynamics during landslide reactivation. Journal of Geophysical Research: Earth Surface, 122, 398-418, https://doi.org/10.1002/2016JF003983
470. Vahedifard, F., Cao, T.D., Thota, S.K. & Ghazanfari, E. 2018. Nonisothermal models for soil–water retention curve. J. Geotech. Geoenviron. Eng., 144, 04018061, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001939
471. van Asch, T.W., Malet, J.-P., van Beek, L.P. & Amitrano, D. 2007. Techniques, issues and advances in numerical modelling of landslide hazard. Bull. Soc. Geol. Fr., 178, 65-88, https://doi.org/10.2113/gssgfbull.178.2.65
472. Van Gaelen, N., Verheyen, D., Ronchi, B., Struyf, E., Govers, G., Vanderborght, J. & Diels, J. 2014. Identifying the transport pathways of dissolved organic carbon in contrasting catchments. Vadose Zone J., 13, https://doi.org/10.2136/vzj2013.11.0199
473. van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Sci. Soc. Am. J., 44, 892-898, https://doi.org/10.2136/sssaj1980.03615995004400050002x
474. Vanapalli, S., Pufahl, D. & Fredlund, D. 1998. The effect of stress state on the soil-water characteristic behavior of a compacted sandy-clay till. Stress, 1, 100
475. Vanapalli, S.K., Fredlund, D.G. & Pufahl, D.E. 1999. The influence of soil structure and stress history on the soil–water characteristics of a compacted till. Geotechnique, 49, 143-159, https://doi.org/10.1680/geot.1999.49.2.143
476. Vanapalli, S.K., Fredlund, D.G., Pufahl, D.E. & Clifton, A.W. 1996. Model for the prediction of shear strength with respect to soil suction. Can. Geotech. J., 33, 379-392, https://doi.org/10.1139/t96-060
477. Varnes, D.J. 1978. Slope movement types and processes. In: Schuster, R.L. & Krizek, R.J. (eds.) Landslides, Analysis and Control, Special Report 176: Transportation Research Board. National Academy of Sciences, Washington, DC, U.S., 11-33.
478. Vicca, S., Stocker, B.D., Reed, S., Wieder, W.R., Bahn, M., Fay, P.A., Janssens, I.A., Lambers, H., Peñuelas, J. & Piao, S. 2018. Using research networks to create the comprehensive datasets needed to assess nutrient availability as a key determinant of terrestrial carbon cycling. Environmental Research Letters, 13, 125006, https://doi.org/10.1088/1748-9326/aaeae7
479. Villar, M.V. & Lloret, A. 2004. Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite. Applied Clay Science, 26, 337-350, https://doi.org/10.1016/j.clay.2003.12.026
480. Viratjandr, C. & Michalowski, R.L. 2006. Limit analysis of submerged slopes subjected to water drawdown. Can. Geotech. J., 43, 802-814, https://doi.org/10.1139/t06-042
481. Vogel, H.-J., Clothier, B., Li, X.-Y. & Lin, H. 2013. Hydropedology—A perspective on current research. Vadose Zone J., 12, https://doi.org/10.2136/vzj2013.09.0161
482. Wösten, J.H.M., Pachepsky, Y.A. & Rawls, W.J. 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol., 251, 123-150, https://doi.org/10.1016/S0022-1694(01)00464-4
483. Wan, M., Ye, W.M., Chen, Y.G., Cui, Y.J. & Wang, J. 2015. Influence of temperature on the water retention properties of compacted GMZ01 bentonite. Environ. Earth Sci., 73, 4053-4061, https://doi.org/10.1007/s12665-014-3690-y
484. Wang, J., Chen, M., Lü, G., Yue, S., Wen, Y., Lan, Z. & Zhang, S. 2020a. A data sharing method in the open web environment: Data sharing in hydrology. J. Hydrol., 587, 124973, https://doi.org/10.1016/j.jhydrol.2020.124973
485. Wang, J., Gong, S., Xu, D., Juan, S. & Mu, J. 2013. Numerical simulations and validation of water flow and heat transport in a subsurface drip irrigation system using HYDRUS‐2D. Irrig. Drain., 62, 97-106, https://doi.org/10.1002/ird.1699
486. Wang, X., Ma, C., Wang, Y., Wang, Y., Li, T., Dai, Z. & Li, M. 2020b. Effect of root architecture on rainfall threshold for slope stability: variabilities in saturated hydraulic conductivity and strength of root-soil composite. Landslides, 17, 1965-1977, https://doi.org/10.1007/s10346-020-01422-6
487. Wang, Y., Cao, Z. & Au, S.K. 2017. Practical reliability analysis of slope stability by advanced Monte Carlo simulations in a spreadsheet. Can. Geotech. J., 48, 162-172, https://doi.org/10.1139/T10-044
488. Waxman, M.H. & Smits, L.J.M. 1968. Electrical conductivities in oil-bearing shaly sands. Society of Petroleum Engineers Journal, 8, 107-122, https://doi.org/10.2118/1863-A
489. Wei, L.W., Huang, C.M., Chen, H., Lee, C.T., Chi, C.C. & Chiu, C.L. 2018. Adopting the I 3-R 24 rainfall index and landslide susceptibility for the establishment of an early warning model for rainfall-induced shallow landslides. Nat. Hazards Earth Syst. Sci., 18, https://doi.org/10.5194/nhess-18-1717-2018
490. Wei, L.W., Lee, C.F., Huang, C.M., Huang, W.K., Lin, H.H. & Chi, C.C. 2015. A prelimilary study of the rainfall threshold and early warning system for landslide in Taiwan. In: Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J. & Sciarra, N. (eds.) Engineering Geology for Society and Territory-Volume 2. Springer, Cham, Switzerland, 1571-1574.
491. Weidner, L., DePrekel, K., Oommen, T. & Vitton, S. 2019. Investigating large landslides along a river valley using combined physical, statistical, and hydrologic modeling. Eng. Geol., 259, 105169, https://doi.org/10.1016/j.enggeo.2019.105169
492. Wen, T., Shao, L. & Guo, X. 2021. Effect of hysteresis on hydraulic properties of soils under multiple drying and wetting cycles. Eur. J. Environ. Civ. Eng., 25, 1750-1762, https://doi.org/10.1080/19648189.2019.1600037
493. Wen, T., Shao, L., Guo, X. & Zhao, Y. 2020. Experimental investigations of the soil water retention curve under multiple drying–wetting cycles. Acta Geotechnica, 15, 3321-3326, https://doi.org/10.1007/s11440-020-00964-2
494. Wenninger, J., Uhlenbrook, S., Tilch, N. & Leibundgut, C. 2004. Experimental evidence of fast groundwater responses in a hillslope/floodplain area in the Black Forest Mountains, Germany. Hydrological Processes, 18, 3305-3322, https://doi.org/10.1002/hyp.5686
495. Werner, A.D. & Lockington, D.A. 2006. Artificial pumping errors in the Kool–Parker scaling model of soil moisture hysteresis. J. Hydrol., 325, 118-133, https://doi.org/10.1016/j.jhydrol.2005.10.012
496. West, N., Kirby, E., Nyblade, A.A. & Brantley, S.L. 2019. Climate preconditions the Critical Zone: Elucidating the role of subsurface fractures in the evolution of asymmetric topography. Earth and Planetary Science Letters, 513, 197-205, https://doi.org/10.1016/j.epsl.2019.01.039
497. White, T., Brantley, S., Banwart, S., Chorover, J., Dietrich, W., Derry, L., Lohse, K., Anderson, S., Aufdendkampe, A., Bales, R., Kumar, P., Richter, D. & McDowell, B. 2015. The role of critical zone observatories in critical zone science. In: Giardino, J.R. & Houser, C. (eds.) Developments in Earth Surface Processes. Elsevier, Amsterdam, Netherlands, 15-78.
498. Whiteley, J.S., Chambers, J.E., Uhlemann, S., Wilkinson, P.B. & Kendall, J.M. 2019. Geophysical Monitoring of Moisture-Induced Landslides: A Review. Reviews of Geophysics, 57, 106-145, https://doi.org/10.1029/2018RG000603
499. Wieczorek, G.F. 1996. Landslides: investigation and mitigation. Chapter 4-Landslide triggering mechanisms. In: Turner, A.K. & Schuster, R.L. (eds.) Transportation Research Board Special Report. Transportation Research Board, Washington, DC, U.S.
500. Wieczorek, G.F. & Glade, T. 2005. Climatic factors influencing occurrence of debris flows. In: Jakob, M. & Hungr, O. (eds.) Debris-flow hazards and related phenomena. Springer, Heidelberg, Berlin, Germany, 325-362.
501. Wijaya, M. & Leong, E.C. 2016. Equation for unimodal and bimodal soil–water characteristic curves. Soils Found., 56, 291-300, https://doi.org/10.1016/j.sandf.2016.02.011
502. Wijaya, M. & Leong, E.C. 2017. Modelling the effect of density on the unimodal soil-water characteristic curve. Géotechnique, 67, 637-645, https://doi.org/10.1680/jgeot.15.P.270
503. Wilkinson, P.L., Anderson, M.G. & Lloyd, D.M. 2002a. An integrated hydrological model for rain‐induced landslide prediction. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 27, 1285-1297, https://doi.org/10.1002/esp.409
504. Wilkinson, P.L., Anderson, M.G., Lloyd, D.M. & Renaud, J.P. 2002b. Landslide hazard and bioengineering: towards providing improved decision support through integrated numerical model development. Environ. Modell. Software, 17, 333-344, https://doi.org/10.1016/S1364-8152(01)00078-0
505. Willemen, L., Veldkamp, A., Verburg, P., Hein, L. & Leemans, R. 2012. A multi-scale modelling approach for analysing landscape service dynamics. Journal of environmental management, 100, 86-95, https://doi.org/10.1016/j.jenvman.2012.01.022
506. Willett, S.D., Fisher, D., Fuller, C., En Chao, Y. & Chia Yu, L. 2003. Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology, 31, 945-948, https://doi.org/10.1130/G19702.1
507. Wind, G.P. 1955. A field experiment concerning capillary rise of moisture in a heavy clay soil. Netherlands Journal of Agricultural Science, 3, 60-69, https://doi.org/10.18174/njas.v3i1.17827
508. Winter, T.C., Harvey, J.W., Franke, O.L. & Alley, W.M. 1998. Ground water and surface water: a single resource. U.S. Geological Survey Circular, Denver, Colorado, U.S.
509. Wlostowski, A.N., Gooseff, M.N., McKnight, D.M., Jaros, C. & Lyons, W.B. 2016. Patterns of hydrologic connectivity in the McMurdo Dry Valleys, Antarctica: a synthesis of 20 years of hydrologic data. Hydrological Processes, 30, 2958-2975, https://doi.org/10.1002/hyp.10818
510. Wu, C.H. & Chen, S.C. 2009. Determining landslide susceptibility in Central Taiwan from rainfall and six site factors using the analytical hierarchy process method. Geomorphology, 112, 190-204, https://doi.org/10.1016/j.geomorph.2009.06.002
511. Wu, C.H., Chen, S.C. & Chou, H.T. 2011. Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in the Kaoping Watershed, Taiwan. Eng. Geol., 123, 13-21, https://doi.org/10.1016/j.enggeo.2011.04.018
512. Wu, C.H., Chen, S.C. & Feng, Z.Y. 2014. Formation, failure, and consequences of the Xiaolin landslide dam, triggered by extreme rainfall from Typhoon Morakot, Taiwan. Landslides, 11, 357-367, https://doi.org/10.1007/s10346-013-0394-4
513. Wu, J.-H., Chen, J.-H. & Lu, C.-W. 2013. Investigation of the Hsien-du-Shan rock avalanche caused by typhoon Morakot in 2009 at Kaohsiung county, Taiwan. International Journal of Rock Mechanics and Mining Sciences, 60, 148-159, https://doi.org/10.1016/j.ijrmms.2012.12.033
514. Wu, L., Huang, R. & Li, X. 2020. Hydro-mechanical Analysis of Rainfall-Induced Landslides. Science Press, Beijing, China.
515. Wu, W. & Sidle, R.C. 1995. A distributed slope stability model for steep forested basins. Water Resour. Res., 31, 2097-2110, https://doi.org/10.1029/95WR01136
516. Xiao, T., Li, D.Q., Cao, Z.J. & Tang, X.S. 2017. Full probabilistic design of slopes in spatially variable soils using simplified reliability analysis method. GEORISK, 11, 146-159, https://doi.org/10.1080/17499518.2016.1250279
517. Xie, W.L., Li, P., Vanapalli, S.K. & Wang, J.D. 2018. Prediction of the wetting-induced collapse behaviour using the soil-water characteristic curve. Journal of Asian Earth Sciences, 151, 259-268, https://doi.org/10.1016/j.jseaes.2017.11.009
518. Xing, X., Wu, C., Li, J., Li, X., Zhang, L. & He, R. 2021. Susceptibility assessment for rainfall-induced landslides using a revised logistic regression method. Natural Hazards, 106, 97-117, https://doi.org/10.1007/s11069-020-04452-4
519. Xu, B. & Low, B.K. 2006. Probabilistic stability analyses of embankments based on finite-element method. J. Geotech. Geoenviron. Eng., 132, 1444-1454, https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1444)
520. Xu, C., Wang, L., Tien, Y.M., Chen, J.-M. & Juang, C.H. 2014. Robust design of rock slopes with multiple failure modes: modeling uncertainty of estimated parameter statistics with fuzzy number. Environ. Earth Sci., 72, 2957-2969, https://doi.org/10.1007/s12665-014-3201-1
521. Yan, W., Birle, E. & Cudmani, R. 2021. A new framework to determine general multimodal soil water characteristic curves. Acta Geotechnica, 16, 3187-3208, https://doi.org/10.1007/s11440-021-01245-2
522. Yang, C., Sheng, D. & Carter, J.P. 2012. Effect of hydraulic hysteresis on seepage analysis for unsaturated soils. Comput. Geotech., 41, 36-56, https://doi.org/10.1016/j.compgeo.2011.11.006
523. Yang, K.H., Nguyen, T.S., Rahardjo, H. & Lin, D.G. 2020. Deformation characteristics of unstable shallow slopes triggered by rainfall infiltration. Bull. Eng. Geol. Environ., 1-28, https://doi.org/10.1007/s10064-020-01942-4
524. Yang, L. & Liu, E. 2020. Numerical analysis of the effects of crack characteristics on the stress and deformation of unsaturated soil slopes. Water, 12, 194, https://doi.org/10.3390/w12010194
525. Yang, Y.S. & Yeh, H.F. 2019. Evaluate the probability of failure in rainfall-induced landslides using a fuzzy point estimate method. Geofluids, 2019, 3587989, https://doi.org/10.1155/2019/3587989
526. Yang, Y.S., Yeh, H.F., Huang, C.C. & Chen, H.Y. 2023. Reviews and syntheses: promoting the advancement of hillslope hydrology and stability in taiwan from the perspective of critical zone science. Water, 15, 1234, https://doi.org/10.3390/w15061234
527. Yang, Y.S., Yeh, H.F., Ke, C.C., Chen, N.C. & Chang, K.C. 2022. Assessment of probability of failure on rainfall-induced shallow landslides at slope scale using a physical-based model and fuzzy point estimate method. Front. Earth Sci., 10, https://doi.org/10.3389/feart.2022.957506
528. Yu, H.S., Salgado, R., Sloan, S.W. & Kim, J.M. 1998. Limit analysis versus limit equilibrium for slope stability. J. Geotech. Geoenviron. Eng., 124, 1-11, https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(1)
529. Yu, Y., Loiskandl, W., Kaul, H.P., Himmelbauer, M., Wei, W., Chen, L. & Bodner, G. 2016. Estimation of runoff mitigation by morphologically different cover crop root systems. J. Hydrol., 538, 667-676, https://doi.org/10.1016/j.jhydrol.2016.04.060
530. Zadeh, L.A. 1965. Fuzzy sets. Information and Control, 8, 338-353, https://doi.org/10.1016/S0019-9958(65)90241-X
531. Zapata-Rios, X., Brooks, P.D., Troch, P.A., McIntosh, J. & Rasmussen, C. 2016. Influence of climate variability on water partitioning and effective energy and mass transfer in a semi-arid critical zone. Hydrology and Earth System Sciences, 20, 1103–1115, https://doi.org/10.5194/hess-20-1103-2016
532. Zapata‐Rios, X., McIntosh, J., Rademacher, L., Troch, P.A., Brooks, P.D., Rasmussen, C. & Chorover, J. 2015. Climatic and landscape controls on water transit times and silicate mineral weathering in the critical zone. Water Resour. Res., 51, 6036-6051, https://doi.org/10.1002/2015WR017018
533. Zapata, C.E., Houston, W.N., Houston, S.L. & Walsh, K.D. 2000. Soil–water characteristic curve variability. In: Shackelford, C.D., Houston, S.L. & Chang, N.Y. (eds.) Advances in unsaturated geotechnics. Proceedings of the GeoDenver Conference, Denver, CO, U.S., 84-124.
534. Zeng, L., Xiao, L.Y., Zhang, J.H. & Gao, Q.F. 2019. Effect of the characteristics of surface cracks on the transient saturated zones in colluvial soil slopes during rainfall. Bull. Eng. Geol. Environ., 1-11, https://doi.org/10.1007/s10064-019-01584-1
535. Zhai, Q., Rahardjo, H., Satyanaga, A., Dai, G. & Du, Y. 2020. Estimation of the wetting scanning curves for sandy soils. Eng. Geol., 272, 105635, https://doi.org/10.1016/j.enggeo.2020.105635
536. Zhai, Q., Zhu, Y., Rahardjo, H., Satyanaga, A., Dai, G., Gong, W., Zhao, X. & Ou, Y. 2023. Prediction of the soil–water characteristic curves for the fine-grained soils with different initial void ratios. Acta Geotechnica, https://doi.org/10.1007/s11440-023-01833-4
537. Zhang, J., Li, J. & Lin, H. 2018a. Models and influencing factors of the delay phenomenon for rainfall on slope stability. Eur. J. Environ. Civ. Eng., 22, 122-136, https://doi.org/10.1080/19648189.2016.1179682
538. Zhang, L. & Chen, Q. 2005. Predicting Bimodal Soil–Water Characteristic Curves. J. Geotech. Geoenviron. Eng., 131, 666-670, https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(666)
539. Zhang, L.L., Zhang, J., Zhang, L.M. & Tang, W.H. 2011. Stability analysis of rainfall-induced slope failure: a review. Proc. Inst. Civ. Eng.: Geotech. Eng., 164, 299-316, https://doi.org/10.1680/geng.2011.164.5.299
540. Zhang, S., Zhao, L., Delgado Tellez, R. & Bao, H. 2018b. A physics-based probabilistic forecasting model for rainfall-induced shallow landslides at regional scale. Nat. Hazards Earth Syst. Sci., 18, 969-982, https://doi.org/10.5194/nhess-18-969-2018
541. Zheng, H., Liu, D. & Li, C. 2005. Slope stability analysis based on elasto‐plastic finite element method. International Journal for Numerical Methods in Engineering, 64, 1871-1888, https://doi.org/10.1002/nme.1406
542. Zheng, H., Sun, G. & Liu, D. 2009. A practical procedure for searching critical slip surfaces of slopes based on the strength reduction technique. Comput. Geotech., 36, 1-5, https://doi.org/10.1016/j.compgeo.2008.06.002
543. Zhou, A., Huang, R. & Sheng, D. 2016. Capillary water retention curve and shear strength of unsaturated soils. Can. Geotech. J., 53, 974-987, https://doi.org/10.1139/cgj-2015-0322
544. Zhou, A.N. 2013. A contact angle-dependent hysteresis model for soil–water retention behaviour. Comput. Geotech., 49, 36-42, https://doi.org/10.1016/j.compgeo.2012.10.004
545. Zhou, A.N., Sheng, D. & Carter, J.P. 2012. Modelling the effect of initial density on soil-water characteristic curves. Géotechnique, 62, 669-680, https://doi.org/10.1680/geot.10.P.120
546. Zhou, W., Qiu, H., Wang, L., Pei, Y., Tang, B., Ma, S., Yang, D. & Cao, M. 2022. Combining rainfall-induced shallow landslides and subsequent debris flows for hazard chain prediction. CATENA, 213, 106199, https://doi.org/10.1016/j.catena.2022.106199
547. Zhou, X., Li, J., Liu, Z. & Tang, Y. 2019. Analysis of slope stability with imprecise soil properties using uncertain sets. Math. Prob. Eng., 2019, https://doi.org/10.1155/2019/1062347
548. Zhou, Y., Cheuk, C. & Tham, L. 2009. Deformation and crack development of a nailed loose fill slope subjected to water infiltration. Landslides, 6, 299, https://doi.org/10.1007/s10346-009-0162-7
549. Zimmermann, H.J. 2011. Fuzzy set theory—and its applications. 4th ed. ed. Springer Science & Business Media, New York, NY, U.S.
550. Nantou Branch, Soil and Water Conservation Bureau Council of Agriculture (SWCB), Executive Yuan. 2018. Large-scale collapse investigation and monitoring plan in the Babaoliao area - Evaluation and Correlation of Key Factors of Multi-Scale Sliding Signs in Collapse (in Chinese).