| 研究生: |
陳昱瑄 Chen, Yu-Hsuan |
|---|---|
| 論文名稱: |
二維新穎材料:過渡金屬三硫屬化物與光之交互作用行為之研究 The Behavior of Interaction between Photon and Novel Two-Dimensional Material: Transition Metal Trichalcogenides |
| 指導教授: |
徐旭政
Hsu, Hsu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 二維 、錳硫族磷酸鹽 、反鐵磁 、顯微光致發光 、變壓拉曼 、金屬化 |
| 外文關鍵詞: | two-dimensional, MnPX3, antiferromagnetism, micro-photoluminescence, pressure-dependent Raman, metallization |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於二維材料的表面積大、結構穩定,以及容易調變能帶結構等優點,近年來,越來越多的團隊投入到這樣的研究當中,其中錳硫族磷酸鹽MnPX3在單層下為直接能隙且帶有反鐵磁性質,因此非常適合應用於催化、電子自旋元件或儲能元件上。
在本論文中,我們利用了各種光學系統量測新穎的反鐵磁二維材料。X光繞射及拉曼光譜皆顯示出晶體良好的結晶情況及穩定的結構,吸收與反射光譜則是確定了材料的能隙位置,MnPS3於2.51 eV、MnPS3於1.97 eV,並且首次發現個位數層數下MnPS3的螢光發光,中心波長於521 nm,半高寬僅15 nm。
除此之外還有利用鑽石高壓砧進行高達40 GPa的變壓拉曼量測,在非靜水壓的環境下,觀察到MnPS3於26 GPa,MnPS3於20 GPa下由半導體轉為金屬態的變化,以及環境對於金屬化壓力點的影響。
A sizeable chemical reaction surface area, stable structure, and ease of modulating the energy band structure are the advantages of two-dimensional (2D), so a growing number of research groups have been dedicated to this theme in recent years. The monolayer of transition metal trichalcogenides is a direct bandgap semiconductor with antiferromagnetic properties. Therefore, it is very promising for application in catalysis, electron spin devices, or energy storage devices. Among them, transition-metal phosphorus chalcogenides (MPX3) have attracted great interest because of their unique magnetism properties in low-dimensional systems.
In this thesis, various optical measurements were employed to explore the physical properties of MnPX3. The X-ray diffraction and Raman scattering measurements show good crystallinity and stable structure. The optical absorption and reflection spectra measurements could determine the energy bandgap of the bulk MPX3 material. The band gap of MnPS3 and MnPS3 are at 2.51 eV and 1.97 eV, respectively. The photoluminescence results of MnPS3 show the intraband transition for bulk sample. The band-to-band emission of the few-layer MnPS3 located at 521 nm (~2.38 eV) was observed for the first time.
Moreover, the pressure-dependent Raman scattering measurements were performed using the diamond cell anvil. Under the non-hydrostatic state, we found the phase transition from semiconductor to the metallic state of MnPS3 and MnPSe3 around 27 and 21 GPa, respectively. We discuss the influence of the environment on the metallization pressure point.
[1] Xu Zhang, Xudong Zhao, Dihua Wu, Yu Jing, and Zhen Zhou. Mnpse3 monolayer: a promising 2d visible-light photohydrolytic catalyst with high carrier mobility. Advanced science, 3(10):1600062, 2016.
[2] S Klotz, JC Chervin, P Munsch, and Gilles Le Marchand. Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7):075413, 2009.
[3] Rajat Kumar, Ramesh Naidu Jenjeti, Muthu P Austeria, and S Sampath. Bulk and fewlayer mnps 3: a new candidate for field effect transistors and uv photodetectors. Journal of Materials Chemistry C, 7(2):324–329, 2019.
[4] Rajat Kumar, Ramesh Naidu Jenjeti, and S Sampath. Two-dimensional, few-layer mnps3 for selective no2 gas sensing under ambient conditions. ACS sensors, 5(2):404–411, 2020.
[5] Yan Sang, LvxuanWang, Xi Cao, Gaofei Ding, Yonghao Ding, Yanan Hao, Na Xu, Hanzhi Yu, Linlin Li, and Shengjie Peng. Emerging 2d-layered mnps3/rgo composite as a superior anode for sodium-ion batteries. Journal of Alloys and Compounds, 831:154775, 2020.
[6] MJCoak,DMJarvis,HHamidov, CRS Haines, PL Alireza, CLiu, Suhan Son, InhoHwang, GI Lampronti, D Daisenberger, et al. Tuning dimensionality in van-der-waals antiferromagnetic mott insulators tmps3. Journal of Physics: Condensed Matter, 32(12):124003, 2019.
[7] Robert A Evarestov and Alexei Kuzmin. Topological analysis of chemical bonding in the layered fepse3 upon pressure-induced phase transitions. Journal of computational chemistry, 41(31):2610–2623, 2020.
[8] Jian Liu, Xi-Bo Li, Da Wang, Woon-Ming Lau, Ping Peng, and Li-Min Liu. Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting. The Journal of Chemical Physics, 140(5):054707, 2014.
[9] Rutuparna Samal, Gopal Sanyal, Brahmananda Chakraborty, and Chandra Sekhar Rout. Two-dimensional transition metal phosphorous trichalcogenides (mpx 3): a review on emerging trends, current state and future perspectives. Journal of Materials Chemistry A, 9(5):2560–2591, 2021.
[10] Ke-zhao Du, Xing-zhi Wang, Yang Liu, Peng Hu, M Iqbal Bakti Utama, Chee Kwan Gan, Qihua Xiong, and Christian Kloc. Weak van der waals stacking, wide-range band gap, and raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS nano, 10(2):1738–1743, 2016.
[11] Juntao Yang, Yong Zhou, Qilin Guo, Yuriy Dedkov, and Elena Voloshina. Electronic, magnetic and optical properties ofmnpx 3 (x= s, se) monolayers with and without chalcogen defects: A first-principles study. RSC advances, 10(2):851–864, 2020.
[12] V Grasso, F Neri, L Silipigni, and M Piacentini. Fluorescence spectra of the layered semiconductor compound mnps 3. Physical Review B, 40(8):5529, 1989.
[13] V Grasso, F Neri, P Perillo, and L Silipigni. Temperature dependence of the mnps3 crystal fluorescence. Il Nuovo Cimento D, 15(1):9–16, 1993.
[14] Yonggang Wang, Zhengyang Zhou, Ting Wen, Yannan Zhou, Nana Li, Fei Han, Yuming Xiao, Paul Chow, Junliang Sun, Michael Pravica, et al. Pressure-driven cooperative spincrossover, large-volume collapse, and semiconductor-to-metal transition in manganese (ii) honeycomb lattices. Journal of the American Chemical Society, 138(48):15751–15757, 2016.
[15] Nathan C Harms, Heung-Sik Kim, Amanda J Clune, Kevin A Smith, Kenneth R O’Neal, Amanda V Haglund, David G Mandrus, Zhenxian Liu, Kristjan Haule, David Vanderbilt, et al. Piezochromism in the magnetic chalcogenide mnps3. npj Quantum Materials, 5(1):1–7, 2020.
[16] FengmeiWang, Tofik A Shifa, Peng Yu, Peng He, Yang Liu, FengWang, ZhenxingWang, Xueying Zhan, Xiaoding Lou, Fan Xia, et al. New frontiers on van der waals layered metal phosphorous trichalcogenides. Advanced Functional Materials, 28(37):1802151, 2018.
[17] Kostya S Novoselov, Andre K Geim, Sergei V Morozov, De-eng Jiang, Yanshui Zhang, Sergey V Dubonos, Irina V Grigorieva, and Alexandr A Firsov. Electric field effect in atomically thin carbon films. science, 306(5696):666–669, 2004.
[18] Branimir Radisavljevic, Aleksandra Radenovic, Jacopo Brivio, Valentina Giacometti, and Andras Kis. Single-layer mos2 transistors. Nature nanotechnology, 6(3):147–150, 2011.
[19] Rui Gusmão, Zdenek Sofer, David Sedmidubsky, Stepan Huber, and Martin Pumera. The role of the metal element in layered metal phosphorus triselenides upon their electrochemical sensing and energy applications. ACS Catalysis, 7(12):8159–8170, 2017.
[20] Shuren Lin, Alexandra Carvalho, ShanchengYan, Roger Li, Sujung Kim, Aleksandr Rodin, Lídia Carvalho, Emory M Chan, XiWang, Antonio H Castro Neto, et al. Accessing valley degree of freedom in bulk tin (ii) sulfide at room temperature. Nature communications, 9(1):1–7, 2018.
[21] LJ Sham, SJ Allen Jr, A Kamgar, and DC Tsui. Valley-valley splitting in inversion layers on a high-index surface of silicon. Physical Review Letters, 40(7):472, 1978.
[22] H Fritzsche. Valley-orbit splitting of antimony in germanium. Physical Review, 120(4):1120, 1960.
[23] Xiao Li, Ting Cao, Qian Niu, Junren Shi, and Ji Feng. Coupling the valley degree of freedom to antiferromagnetic order. Proceedings of the National Academy of Sciences, 110(10):3738–3742, 2013.
[24] Avinash P Nayak, Swastibrata Bhattacharyya, Jie Zhu, Jin Liu, Xiang Wu, Tribhuwan Pandey, Changqing Jin, Abhishek K Singh, Deji Akinwande, and Jung-Fu Lin. Pressureinduced semiconducting to metallic transition in multilayered molybdenum disulphide. Nature communications, 5(1):1–9, 2014.
[25] Zhen-Hua Chi, Xiao-Miao Zhao, Haidong Zhang, Alexander F Goncharov, Sergey S Lobanov, Tomoko Kagayama, Masafumi Sakata, and Xiao-Jia Chen. Pressure-induced metallization of molybdenum disulfide. Physical review letters, 113(3):036802, 2014.
[26] Zhenhua Chi, Feihsiang Yen, Feng Peng, Jinlong Zhu, Y¼in Zhang, Xuliang Chen, Zhaorong Yang, Xiaodi Liu, Yanming Ma, Yusheng Zhao, et al. Ultrahigh pressure superconductivity in molybdenum disulfide. arXiv preprint arXiv:1503.05331, 2015.
[27] Zhao Zhao, Ha¼un Zhang, Hongtao Yuan, ShibingWang, Yu Lin, Qiaoshi Zeng, Gang Xu, Zhenxian Liu, GK Solanki, KD Patel, et al. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide. Nature communications, 6(1):1–8, 2015.
[28] Sakun Duwal and Choong-Shik Yoo. Shear-induced isostructural phase transition and metallization of layered tungsten disulfide under nonhydrostatic compression. The Journal of Physical Chemistry C, 120(9):5101–5107, 2016.
[29] YuKai Zhuang, LiDong Dai, Lei Wu, HePing Li, HaiYing Hu, KaiXiang Liu, LinFei Yang, and Chang Pu. Pressure-induced permanent metallization with reversible structural transition in molybdenum disulfide. Applied Physics Letters, 110(12):122103, 2017.
[30] Yukai Zhuang, Lidong Dai, Heping Li, Haiying Hu, Kaixiang Liu, Linfei Yang, Chang Pu, Meiling Hong, and Pengfei Liu. Deviatoric stresses promoted metallization in rhenium disulfide. Journal of Physics D: Applied Physics, 51(16):165101, 2018.
[31] Raymond Brec. Review on structural and chemical properties of transition metal phosphorus trisulfides mps 3. In Intercalation in Layered Materials, pages 93–124. Springer, 1986.
[32] Barry E Taylor, John Steger, and AaronWold. Preparation and properties of some transition metal phosphorus trisulfide compounds. Journal of Solid State Chemistry, 7(4):461–467, 1973.
[33] Bheema Lingam Chittari, Youngju Park, Dongkyu Lee, Moonsup Han, Allan H MacDonald, Euyheon Hwang, and Jeil Jung. Electronic and magnetic properties of single-layer m p x 3 metal phosphorous trichalcogenides. Physical Review B, 94(18):184428, 2016.
[34] G Ouvrard, R Brec, and J Rouxel. Structural determination of some mps3 layered phases (m= mn, fe, co, ni and cd). Materials research bulletin, 20(10):1181–1189, 1985.
[35] R Brec et al. Proprietes structurales de phases miipx3 (x= s, se). 1980.
[36] E Prouzet, G Ouvrard, and R Brec. Structure determination of znps3. Materials research bulletin, 21(2):195–200, 1986.
[37] G Burr, E Durand, M Evain, and R Brec. Low-temperature copper ordering in the layered thiophosphate cuvp2s6: A time-of-flight neutron powder diffraction study. Journal of Solid State Chemistry, 103(2):514–518, 1993.
[38] MZJandali, GEulenberger, andHHahn. Die kristallstrukturen von hg2p2s6 und hg2p2se6. Zeitschrift für anorganische und allgemeine Chemie, 447(1):105–118, 1978.
[39] F Boucher, M Evain, and R Brec. Phase transition upon d10 cd2+ ordering in cdps3. Acta Crystallographica Section B: Structural Science, 51(6):952–961, 1995.
[40] Stephen Lee, Pierre Colombet, Guy Ouvrard, and Raymond Brec. General trends observed in the substituted thiophosphate family. synthesis and structure of silver scandium thiophosphate, agscp2s6, and cadmium iron thiophosphate, cdfep2s6. Inorganic Chemistry, 27(7):1291–1294, 1988.
[41] Jan Macutkevic, Juras Banys, and Yulian Vysochanskii. Broadband dielectric spectroscopy of cuinp2se6 crystals. physica status solidi (a), 206(1):167–172, 2009.
[42] Renju Zacharia, Hendrik Ulbricht, and Tobias Hertel. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Physical Review B, 69(15):155406, 2004.
[43] C Calareso, V Grasso, and L Silipigni. Optical spectra of the layered cd 2 p 2 s 6 and cd 2 p 2 se 6 compounds in the region from 1.6 to 5.5 ev. Journal of applied physics, 82(12):6228–6234, 1997.
[44] PJS Foot, J Suradi, and PA Lee. Optical and electronic properties of the layered semiconductors nips3 and feps3. Materials Research Bulletin, 15(2):189–193, 1980.
[45] PA Joy and S Vasudevan. Magnetism in the layered transition-metal thiophosphates m ps 3 (m= mn, fe, and ni). Physical Review B, 46(9):5425, 1992.
[46] V Grasso, F Neri, S Santangelo, L Silipigni, and M Piacentini. Electronic conduction in the layered semiconductor mnps3. Journal of Physics: Condensed Matter, 1(21):3337, 1989.
[47] Zhihao Yu, Zhun-Yong Ong, Yiming Pan, Yang Cui, Run Xin, Yi Shi, BaigengWang, Yun Wu, Tangsheng Chen, Yong-Wei Zhang, et al. Realization of room-temperature phononlimited carrier transport in monolayer mos2 by dielectric and carrier screening. Advanced Materials, 28(3):547–552, 2016.
[48] Yang Cui, Run Xin, Zhihao Yu, Yiming Pan, Zhun-Yong Ong, Xiaoxu Wei, Junzhuan Wang, Haiyan Nan, Zhenhua Ni, Yun Wu, et al. High-performance monolayer ws2 fieldeffect transistors on high-^ dielectrics. Advanced Materials, 27(35):5230–5234, 2015.
[49] Samantha Bruzzone and Gianluca Fiori. Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride. Applied Physics Letters, 99(22):222108, 2011.
[50] Eric Ressouche, Mickael Loire, Virginie Simonet, Rafik Ballou, Anne Stunault, and AndrewWildes.
Magnetoelectric mnps 3 as a candidate for ferrotoroidicity. Physical Review B, 82(10):100408, 2010.
[51] Xingxing Li, Xiaojun Wu, and Jinlong Yang. Half-metallicity in mnpse3 exfoliated nanosheet with carrier doping. Journal of the American Chemical Society, 136(31):11065–11069, 2014.
[52] V Wang, W Xiao, D-M Ma, R-J Liu, and C-M Yang. Structural, electronic, and optical properties of gaino3: A hybrid density functional study. Journal of Applied Physics, 115(4):043708, 2014.
[53] Michael Binnewies, Robert Glaum, Marcus Schmidt, and Peer Schmidt. Chemical vapor transport reactions–a historical review. Zeitschrift für anorganische und allgemeine Chemie, 639(2):219–229, 2013.
[54] Dongya Wang, Fei Luo, Min Lu, Xiaoji Xie, Ling Huang, and Wei Huang. Chemical vapor transport reactions for synthesizing layered materials and their 2d counterparts. Small, 15(40):1804404, 2019.
[55] LE Orgel. Phosphorescence of solids containing the manganous or ferric ions. The Journal of Chemical Physics, 23(10):1958–1958, 1955.
[56] LE Orgel. Spectra of transition-metal complexes. The Journal of Chemical Physics, 23(6):1004–1014, 1955.
[57] Heung-Sik Kim, Kristjan Haule, and David Vanderbilt. Mott metal-insulator transitions in pressurized layered trichalcogenides. Physical review letters, 123(23):236401, 2019.
[58] Yi-Meng Wang, Jian-Feng Zhang, Cheng-He Li, Xiao-Li Ma, Jian-Ting Ji, Feng Jin, He-Chang Lei, Kai Liu, Wei-Lu Zhang, and Qing-Ming Zhang. Raman scattering study of magnetic layered mps3 crystals (, fe, ni). Chinese Physics B, 28(5):056301, 2019.
[59] Fariborz Kargar, EceAColeman, Subhajit Ghosh, Jonathan Lee, Michael J Gomez, Yuhang Liu, Andres Sanchez Magana, Zahra Barani, Amirmahdi Mohammadzadeh, Bishwajit Debnath, et al. Phonon and thermal properties of quasi-two-dimensional feps3 and mnps3 antiferromagnetic semiconductors. ACS nano, 14(2):2424–2435, 2020.
[60] Thuc T Mai, KF Garrity, Amber McCreary, J Argo, JR Simpson,VDoan-Nguyen, RValdes Aguilar, andARWalker. Magnon-phonon hybridization in quasi-2d antiferromagnetmnpse _3. arXiv preprint arXiv:2011.12557, 2020.
[61] Yu-Jia Sun, Qing-Hai Tan, Xue-Lu Liu, Yuan-Fei Gao, and Jun Zhang. Probing the magnetic ordering of antiferromagnetic mnps3 by raman spectroscopy. The Journal of Physical Chemistry Letters, 10(11):3087–3093, 2019.
[62] TLKZ Schmidt, K Lischka, and W Zulehner. Excitation-power dependence of the nearband-edge photoluminescence of semiconductors. Physical Review B, 45(16):8989, 1992.
校內:2027-09-30公開