| 研究生: |
許良伊 Hsu, Liang-Yi |
|---|---|
| 論文名稱: |
薄型永磁無刷馬達之設計與實現 Design and Implementation of Slim Brushless Permanent-Magnet Motors |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 永磁無刷馬達 、薄型馬達 、馬達設計 |
| 外文關鍵詞: | Motor Design, Slim-type Motor |
| 相關次數: | 點閱:96 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電腦科技的快速發展,消費者對於資訊產品的需求亦快速增加,如儲存裝置、行動電話、數位助理及筆記型電腦等,而產品的發展需求均朝向輕薄化的趨勢。在新的資訊產品的開發過程中,馬達為最主要的動力源,是影響產品輕薄化的關鍵技術之ㄧ,研發高速之薄型馬達設計具有其重要性。本研究整合馬達相關基礎學理,發展具高轉速之薄型永磁無刷馬達(厚度小於3mm),採用軸向磁通型馬達設計,達到馬達輕薄化的目的,並提出兩種新型繞組製程設計,分別為軟性印刷電路繞組及微電鑄繞組,此有異於傳統馬達的繞線式繞組,可有效縮小馬達尺寸並增加馬達量化製程上的彈性。
本論文整合遺傳演算法與磁路分析方法,提出馬達最佳設計流程,可在空間限制條件下,搜尋滿足設計目標的馬達尺寸參數,並提升分析時效,有效節省馬達設計時程。本研究利用所提的最佳化設計流程,成功應用於軸向磁通型結構的高速薄型馬達設計及原型機製作,所開發之薄型馬達原型機無載轉速可達兩萬轉以上,製程中結合軟性印刷電路板技術,實現特殊的箏形繞組設計,可降低馬達繞組的銅損。此外,亦應用微電鑄技術達成薄型馬達線圈繞組開發,該技術更可增加製程量化上的彈性,深具薄型馬達未來之量產應用潛力。最後,避免因耦合器連接造成薄型馬達偏心或是軸承安裝上的問題,配合三相驅動IC電路,提出無需耦合器的反電動勢量測方法,以及馬達特性曲線的間接量測方法。
As the trend toward compact sizes in 3C (computer, communication and consumer) electronic products, the required motor drives in these applications need to be downsized with increased power densities. It appears that the winding of motors is the most awkward part to be scaled down from conventional motor design when miniaturizing. Hence, this thesis mainly presents an optimal motor design procedure to develop a slim-type and high-speed axial-flux motor. The motor design applies two winding fabrications, which are flexible printed circuit board winding (FPCBW) and micro-electroformed winding (MEW). Both of them represent an ultra-thin electromagnetic exciting source where coils could be design as any shape in order to improve the motor performance.
The proposed design procedure integrated with the genetic algorithm (GA) and magnetic circuit analysis, which could calculate the related motor parameters effectively. According to the procedure, a slim-type and high-speed axial-flux motor is designed and prototyped. The prototype uses rhomboidal PCBW to reduce the end-winding length and minimize the copper loss. In addition, the prototype of MEW is fabricated and shows the effectiveness of the micro-electroforming procedure for the development of slim-type motors.
At last, a commercially available motor drive IC can be effectively adapted to make the motor work at higher speed, and excellent agreement is found between simulation and measurement. This thesis also proposed the technique to measure the back-EMF waveform without any coupling, and an indirect method to determine torque-speed characteristic curve for the motor. These would avoid the mechanical destruction from coupling. Experimental results also indicated that the slim-type motor can be effectively adapted to work in 3C electronic products, giving it some promising applications.
[1]Ansoft Corporaton, Maxwell 3D Field Simulator User Reference, 2000.
[2]Bennett G. J., “Spindle motor including stator with magnetic flux guides,” U.S. Patent 6545382, 2002.
[3]Blum W., and Hogaboom G. B., Principles of Electroplating and Electroforming, McGraw -Hill, 1946.
[4]Bumby J. R., Martin R., Mueller M. A., Spooner E., Brown N. L., and Chalmers B. J., “Electromagnetic Design of Axial-flux Permanent Magnet Machines,” IEE Proceeding on Electric Power Application, vol. 151, pp.151-160, 2004.
[5]Caricchi F., Crescimbini F., Mezzetti F., and Santini E., “Multistage Axial-Flux PM Machine for Wheel Direct Drive,” IEEE Transactions on Industry Applications, vol. 32, no.4, pp.882-888, 1996.
[6]Chen J. L., and Tsao Y. C., “Optimal Design of Machine Elements Using Genetic Algorithms,” Journal of the Chinese Society of Mechanical Engineers, vol.14, pp.193-199, 1993.
[7]Cros J., and Viarouge P., “Synthesis of High Performance PM Motors with Concentrated Windings,” IEEE Transactions on Energy Conversion, vol. 17, no.2, pp.248-253, 2002.
[8]Furlani E. P., “A Method for Predicting the Field in Permanent-Magnet Axial-Field Motors,” IEEE Transactions on Magnetics, vol.28, no.5, pp.2061-2066, 1992.
[9]Gieras J. F., Wang R. J., and Kamper M. J., Axial Flux Permanent Magnet Brushless Machines, Kluwer Academic Publishers, Netherlands, 2004.
[10]Goldberg D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing Company, 1989.
[11]Hanselman D. C., Brushless Permanent-Magnet Motor Design, McGraw-Hill, New York, 2003.
[12]Hanselman D. C., “Effect of Skew, Pole Count and Slot Count on Brushless Motor Radial Force, Cogging Torque and Back EMF,” IEE Proceedings-Electric Power Applications, vol.144, pp.325-330, 1997.
[13]Hendsrshot J. R., and Miller T. J. E., Design of Brushless Permanent-Magnet Motors, Oxford University press, New York, 1994.
[14]Holland J. H., “Outline for a Logical Theory of Adaptive Systems,” Journal of the Association for Computing Machinery, vol.3, pp.297-314, 1962.
[15]Hsu L. Y., Tsai M. C., and Huang C. C., “Efficiency Optimization of Brushless Permanent Magnet Motors Using Penalty Genetic Algorithms,” IEEE International Electric Machines and Drives Conference, Madison WI, USA, June 1-4, 2003.
[16]Hsu L. Y., and Tsai M. C., “A Brushless Permanent Magnet Motor with Hybrid Windings,” International Conference on Electrical Machines, Crete Island, Greece, September 2-5, 2006.
[17]Ishikawa T., Masuda M., and Matsunami M., “Finite Element Analysis of Permanent Magnet Type Steeping Motors,” IEEE Transactions on Magnetics, vol.34, no.5, pp.3503-3506, 1998.
[18]Jang G. H., and Chang J. H., “Development of an Axial-gap Spindle Motor for Computer Hard Disk Drivers using PCB and Dual Air Gaps,” IEEE Transactions on Magnetics, vol.38, no.5, pp. 3297-3299, 2002.
[19]Jang G. H., and Kim K. S., “Development of an Ultraslim Spindle Motor for a 3.3-mm-Height CF Type I Disk Drive”, IEEE Transactions on Magnetucs, vol. 39, no.2, pp.790-793, 2003.
[20]Kenjo T., and Sugawara A., Stepping Motors and Their Microprocessor Controls, Oxford Press, Oxford, 1994.
[21]Kitahori H., and Albrecht D. W., “Spindle Motor and Disk Unit,” U.S. Patent 6486578, 2002.
[22]Lee J. K., “Measurement of Magnetic Fields in Axial Field Motors,” IEEE Transactions on Magnetics, vol.28, no.5, pp.3021-3023, 1992.
[23]M.E.A. Testing Systems Ltd., http://www.meatesting.com.
[24]Rennie A. E. W., Bocking C. E. and Bennett G. R., “Electroforming of Rapid Prototyping Mandrels for Electro-discharge Machining Electrodes,” Journal of Materials Processing Technology, pp. 186-196, 2001.
[25]Rohm Corporation, Motor Driver Integrated Circuits: Data Book, USA, 1997.
[26]Shen S. Y., “A Boundary Element Method for Laplace’s Equation without Numerical Integrations,” Journal of Applied Mathematical and Computation, vol.123, pp.1-25, 2001.
[27]Sim D. J., Cho D. K., Chun J. S., Jung H. K., and Chung T. K., “Efficiency Optimization of Interior Permanent Magnet Synchronous Motor Using Genetic Algorithms,” IEEE Transactions on Magnetics, vol.33, no.2, pp.1880-1883, 1997.
[28]Slemon G. R., “An Equivalent Circuit Approach to Analysis of Synchronous Machines with Saliency and Saturation,” IEEE Transactions on Energy Conversion, vol. 5, no.3, pp.538-544, 1990.
[29]Slemon G. R., and Liu X., “Core Losses in Permanent Magnet Motors,’’ IEEE Transactions on Magnetics, vol. 26, no.5, pp.1653-1656, 1990.
[30]Sugawara Laboratories Inc, http://www.sugawara-labs.co.jp.
[31]Toms硬體指南網站, http://www.thg.com.tw/.
[32]Toombs G. A., Electrodynamics of Electrical Machines, Academia, Prague, 1967.
[33]Toshiba World Website, http://www.toshiba.co.jp/worldwide/.
[34]Wnag S. J., Fang G. H., and Lin S. K., “A Flux Estimation Method for a Permanent-Magnet Synchronous Motor,” Journal of Magnetism and Magnetic Materials, vol.282, pp.355-359, 2004.
[35]Zhu Z. Q., and Howe D., “Influence of Design Parameters on Cogging Torque in Permanent,” IEEE Transactions on Energy Conversion, vol.15, no.4, pp.407-412, 2000.
[36]Zhu Z. Q., Howe D., and Mitchell J. K., “Magnetic field analysis and inductances of brushless dc machines with surface-mounted magnets and non-overlapping stator windings”, IEEE Transactions on Magnetics., vol. 31, no.3, p2115-2118, 1995.
[37]王世杰,三相直流無刷馬達特性參數鑑別方法,國立交通大學電機與控制工程學系博士論文, 民國93年。
[38]申秉弘,永磁無刷馬達之新型無轉軸偵測器定位控制與其應用, 國立成功大學機械工程學系碩士論文, 民國91年。
[39]茆尚勳, 直驅式跑步機用直流無刷馬達之設計, 國立成功大學機械工程學系碩士論文, 民國91年。
[40]林定皓, 印刷電路板概論, 台灣電路板協會, 民國94年。
[41]金重勳主編, 磁性技術手冊, 台灣磁性技術協會, 民國91年。
[42]苑偉正, 馬炳和, 微機械與微細加工技術, 西北工業大學出版社, 民國89年。
[43]馬西奎, 電磁場理論及應用, 西安交通大學出版社, 民國89年。
[44]馬達科技術數位學習網, http://emotors.ncku.edu.tw/motor_learn/。
[45]許良伊, Halbach磁環於永磁無刷馬達之設計與特性分析, 國立成功大學機械工程學系碩士論文, 民國92年。
[46]許良伊,蔡明祺, 蔡明欽, 陳建仁, “超薄型馬達型態設計及電鑄繞組應用,” 中華民國發明專利, 申請中。
[47]陳建仁, “微馬達定子電鑄成形及應用”, 馬達科技研究中心數位學習網Motor Express, 第174期, 民國95年。
[48]陳家豪, 李志光,“遺傳演算法於機械元件設計最佳化之應用,” 中國機械工程學會第十二屆學術研討會, 民國84年11月。
[49]張琛, 直流無刷電動機原理及應用, 機械工業出版社, 民國88年。
[50]翁銘鴻, 新型風扇馬達之電腦輔助設計與分析, 國立成功大學機械工程學系碩士論文, 民國90年。
[51]陳雙穩, 永磁無刷馬達之繞線結構對性能影響之研究, 國立成功大學機械工程學系碩士論文, 民國90年。
[52]葉明財, 小型馬達活用技術, 全華科技圖書股份有限公司, 民國88年。
[53]黃建欽, 新型二相直流無刷馬達之分析與實現, 國立成功大學機械工程學系博士論文, 民國92年。
[54]彭兆仲, “永磁直流馬達性能指標穩態分析”, 馬達科技研究中心數位學習網Motor Express, 第130期, 民國94年。
[55]鄒繼斌, 劉寶廷, 崔淑梅, 鄭萍, 磁路與磁場, 哈爾濱工業大學出版社, 民國87年。
[56]蔡明欽, 薄型馬達市場應用及專利分析報告, 金屬工業研究發展中心創新前瞻計畫報告, 民國93年。
[57]蔡清雄, “淺談轉子慣量及時估測,” 馬達科技研究中心數位學習網Motor Express,第11期, 民國92年。
[58]賴益志, 無刷直流馬達之磁路特性分析, 國立成功大學機械工程學系碩士論文,民國89年。