| 研究生: |
林翊珊 Lin, Yi-Shan |
|---|---|
| 論文名稱: |
開孔低降伏鋼板與混凝土複合剪力牆近斷層耐震性能研究 Seismic Behavior of Low-yield Perforated Double Steel Plate and Concrete Composite Shear Wall Systems Subjected to Near-Fault In-Plane Shear Loads |
| 指導教授: |
賴啟銘
Lai, Chi-Ming |
| 共同指導教授: |
鄭錦銅
Cheng, Chin-Tung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 172 |
| 中文關鍵詞: | 開孔鋼板與混凝土複合剪力牆 、近斷層 、反覆載重試驗 、振動台 、補強工法 |
| 外文關鍵詞: | perforated double steel plate and concrete composite shear wall systems, near-fault seismic wave, repeated in-plane lateral pushover tests, shaking table tests, retrofit remedy |
| 相關次數: | 點閱:84 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋼板與混凝土複合剪力牆,為兩片鋼面板中間填充混凝土,並藉由剪力連接器(剪力釘、螺桿)傳遞混凝土與鋼板間之剪力,並達到束制鋼板使鋼板挫屈時機延遲。因鋼板與混凝土複合剪力牆其強大之勁度與強度,一開始該結構配置於核能電廠之外牆圍阻體中,藉以抵抗垂直軸力與側推力,後續亦被看好應用於高樓結構。本實驗之目的為探討開孔鋼板與混凝土複合剪力牆於承受低軸力情況下,進行平面內反覆側推試驗與振動台試驗研究其耐震能力與行為。
本實驗於國家地震工程研究中心南部實驗室,藉由BATS(Bi-Axial Testing System)機台及振動台,完成兩座含翼牆之複合剪力牆試驗,其是牆體尺寸為1200x1200x116 mm,翼牆尺寸為202x1130x100 mm,牆體高寬比為1.0之鋼板與混凝土複合剪力牆試體。其中翼牆未與剪力牆鋼面板銲接,故不提供側推強度。且於牆體配置16個圓形鋼套管,可更加強束制鋼板延緩挫屈發生,以有效發揮鋼板之張力場效應。從文獻發現少有低降伏鋼試體承受振動台研究,而低降伏鋼可增加鋼面板韌性能力且可增大牆體內部剪力釘間之間距,故本文亦採用低降伏鋼板作為嘗試。且以往剪力牆主要應用於高樓建築,台灣處於地震帶斷層密布,過去試驗多於BATS上作動態試驗,其忽略地震中慣性力對牆體之影響,故需釐清振動台加速度控制之動態效應相對於BATS位移控制高應變率動態行為影響,故共製作上述兩座剪力牆體進行反覆側推與振動台試驗研究。
試驗結果發現對高應變率之動態試驗而言,其極限強度於相同試體厚度、軸力作用下較靜態試驗試體來的高,且其韌性消能能力亦較靜態試驗優異。於振動台試驗上,試體承受三種不同震波如El Centro, Kobe及TCU084,且因為試體本身勁度較高,上方質塊載重有其限制,僅能產生2.5倍慣性力並不大,故試體承受慣性力雖讓試體鋼面板好降伏但是整體行為與彈性無異,難與BATS試驗已達極限位移作比較。且因各震波頻率內涵各不相同,試體自然振動週期約為0.2秒,三種震波中以Kobe震波所得放大倍率最大。
根據上述之特性,本文認為含開孔之鋼板與混凝土複合剪力牆亦適合作為老舊建築之補強工法,故採用NCREE校舍結構耐震評估與補強技術手冊中之校舍案例,作為模擬補強對象,驗證其補強效果。
The object of this research is to investigate seismic behavior of perforated double steel plate and concrete composite shear wall systems,which are made of two steel faceplates infilled with concrete, connected together by shear connectors(ex.shear studs and 16 circular steel tubes). The connectors have the functions including transferring shear force,bonding the steel faceplates and concrete infill, and postponing the buckling of steel faceplates. Therefore, two specimens were constructed and tested under constant low axial force and repeated in-plane lateral pushover tests, or in shaking table tests with common or near-fault seismic waves.Then,the experimental results are compared with the predicted values from the theoretical model established in this study. Finally, it is proved that the perforated double steel plate and concrete composite shear wall has excellent ultimate strength, ductility and the energy dissipation capacity. It is evident that the composite wall is suitable for use as a retrofit remedy for old school buildings.
ACI 349M, Code requirements for nuclear safety-related concrete structures and commentary (Metric), ACI 349M-06, American Concrete Institute, Farmington Hills, MI.
Anjan K. Bhowmick, Gilbert Y. Grondin,and Robert G. Driver (2014) “Nonlinear seismic analysis of perforated steel plate shear walls,” Journal of Constructional Steel Research 94,pp.103–113
ANSI/AISC N690-12,ANSI/AISC N690s1-15,”Specification for Safety-Related Steel Structures for Nuclear Facilities.”
Chang, K. C. and Lee, G.(1987). “Strain rate effect on structural steel under cyclic Loading,” J. Eng. Mech, 10.1061/(ASCE)0733-9399(1987)113:9(1292), 1292–1301.
Epackachi, S., Whittaker, A. S., and Huang, Y.-N. (2015) “Analytical modeling of rectangular SC wall panels,” Journal of Constructional Steel Research, 105, pp. 49-59.
Epackachi, S., Whittaker, A. S., Varma, A. H. and Kurt, E. G. (2015) “Finite element modeling of steel-plate concrete composite wall piers,” Engineering Structures, Vol. 100, pp.368-384.
Fukumoto,T., Morita, K.(2000) “Elasto plastic behavior of steel beam to square Concrete filled steel tube (CFT) column connections,” Proceedings of 6th ASCCS conference, Composite and hybrid structures, V.1 pp.565-572.
Kurt, E. G., Varma, A. H., Epackachi, S., and Whittaker, A. S. (2015). “Rectangular SC Wall Piers: Summary of Seismic Behavior and Design.”Structures Congress 2015,pp.1042-1051
Lanning, J., Benzoni, G. and Uang, C.-M. (2016) “Using buckling-restrained braces on long-span bridges. II: Feasibility and development of a near-fault loading protocol,” Journal of Bridge Engineering, 21(5), 04016002.
Mander, J.B., Priestley, M.J.N., and Park, R. (1988) “Theoretical Stress-Strain Model for Confined Concrete,” J. Struct. Drv., ASCE, 114(8), pp.1804-1826.
Ozaki, M., Akita, S., Niwa, N., Matsuo, I., Usami, S. (2001)“Study on Steel Plate Reinforced Concrete Bearing Wall for Nuclear Power Plants(Part 1) Shear and Bending Loading Tests of SC Walls,” Transactions, SMiRT 16, Washington DC, August.
Ozaki, M., Akita, S., Osuga, H., Nakayama, T. and Adachi, N. (2004) “Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear,” Nuclear Engineering and Design, 228, pp. 225–244.
Purba,R.H., (2006)“Design Recommendations for Perforated Steel Plate Shear Walls ”(M.Sc. thesis), The State University of New York at Buffalo, Buffalo, N. Y.
Tokyo Electric Power Company (TEPCO) (2002) “Development of Advanced Concept for Shortening Construction Period of ABWR Plant, ” ICONE10-22491,April 14-18.
Varma, Amit H., Zhang, Kai., Chi, Hoseok., Booth, Peter., Baker, Tod.(2011)“In-Plane Shear Behavior of SC Composite Walls:Theoryvs.Experiment,” Transaction, SMiRT 21,6-11, New Delhi, India.
Xiaodong Ji; Xiaowei Cheng; Xiangfu Jia; and Amit H. Varma, M.ASCE(2017) “ Cyclic In-Plane Shear Behavior of Double-Skin Composite Walls in High-Rise Buildings”
Zhang, L. X. B., Hsu, T. T. C. (1998) “Behavior and analysis of 100 MPa Concrete Membrane Elements,”Journal of Structural Engineering, ASCE, V.124, No.1, Jan,pp.24-34.
高翊書 (2019),「受軸力影響之鋼板混凝土複合牆耐震行為分析研究」,台灣大學土木系,碩士學位論文,黃尹男教授指導,民國108年7月。
國家地震工程研究中心 (2009),「國家地震工程研究中心之校舍結構耐震評估與補強技術手冊(第二版) 」,報告編號:NCREE-09-023。
黃昇賢 (2021),「低降伏鋼板與混凝土複合剪力牆近斷層耐震性能研究」,國立高雄大學土木與環境工程學系,碩士學位論文,俞肇球、鄭錦銅教授指導,民國 110年7月。
詹家昕 (2018),「含邊界構材之鋼板混凝土複合剪力牆側力位移曲線模型之研究」,國立台灣大學土木工程學系,碩士學位論文,黃尹男教授指導,民國110年8月。
張 權 (2006),「低降伏強度鋼鋼板剪力牆系統之耐震行為」,國立台灣科技大學營建系,碩士學位論文,陳生金教授指導,民國95年7月28日。
鄭錦銅、林衍宏、盧煉元 (2001),「圓形鋼管混凝土梁柱接頭之剪力傳遞行為」,國家地震工程研究中心研究報告,NCREE 01-018,民國90年8月。
鄭錦銅、黃柏軒 (2000),「圓形鋼管混凝土柱與鋼梁接頭之耐震研究」,國家地震工程研究中心研究報告,NCREE 00-009,民國89年7月。
莊穎霖 (2018),「近斷層地震特性對隔震結構影響及相應之設計對策(І) 」,國立台灣科技大學營建工程系,碩士學位論文,黃震興教授指導,民國 107年7月。
蘇哲立 (2022),「含翼牆低降伏鋼板與混凝土複合剪力牆近斷層耐震性能研究」,國立高雄大學土木與環境工程學系,碩士學位論文,俞肇球、鄭錦銅教授指導,民國 111年7月。