簡易檢索 / 詳目顯示

研究生: 洪雅馨
Horng, Ya-Hsin
論文名稱: 觸控螢幕式擴增實境環境中的擬似手感
Pseudo Haptic in Augmented Reality Environment Based on Touch Screen
指導教授: 陳建旭
Chen, Chien-Hsu
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 89
中文關鍵詞: 擴增實境觸控螢幕感知聯覺擬似手感
外文關鍵詞: Augmented reality, Touch screen, Perception, Cross-sensory, Pseudo-haptic
相關次數: 點閱:93下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 擴增實境(Augmented Reality, AR)是一種將虛擬的物體加入或融入真實世界當中,利用電腦計算並即時顯示出來與使用者產生互動的技術。近幾年這項技術大量的被應用於多媒體相關產業上,在人們的日常生活中逐漸普及。
    在AR環境中,人類的知覺能夠幫助虛擬物體與現實環境融合進而加強其沉浸的效果。知覺有時候會因連動而影響彼此,藉由控制視覺效果與反應回饋,可以利用聯覺(Cross-sensory)在觸控螢幕上創造出被稱為擬似手感(Pseudo-haptic)的觸感幻覺 (Biocca, Kim, & Choi, 2001; Le´cuyer, 2009)。
    本研究立足於這塊領域,整理出一套在觸控螢幕的擴增實境中製造虛擬知覺的理論與實驗計畫,並於平板電腦上實作此系統;在無需外加器材狀況下藉由推移等動作產生擬似現實的手感,進而展現虛擬物體的質感。
    本實驗變化自Nusseck的彈跳路徑預估實驗(Nusseck, Lagarde, Bardy, Fleming, & Bült-hoff, 2007),實驗環境為單純物件的運動與互動。實驗一:受測者被要求觀察擴增實境環境內虛擬物體的運動,並以5級李克特尺度進行物理特性(彈性、密度、摩擦力)的預測。實驗二:與上個部分呼應,但此部分受測者被要求對該虛擬物體進行推移或拖動等動作,並與另外的虛擬物體產生互動之後同樣進行物理特性的預測。藉由比較受測者之答題與實際數據之差異,得到人類對於虛擬的彈性、密度、摩擦力等特色的接收準度與傾向。實驗三:受測者將必須操作並分辨出五個被設定虛擬質感的樣本,依此填寫混淆矩陣。實驗四:以主觀量表收集受測者各階段的主觀工作負荷量與樂趣程度。
    實驗結果顯示受測者所預估的等級與實際設定數值有相當高的相關性;但由於人類物理知覺十分模糊,受測者回答的數值正確程度不高。而比較單純觀看與加入操作的回合,加入操作與互動線索之樣本上,受測者預測物理屬性的正確程度較高,由體積變化而產生的誤差較小。此外,雖然操作回合在主觀工作負荷量上大於只有觀看的情況,受測者的主觀量表上仍然較偏好能夠動手互動的樣本。
    擬似手感的擴增實境設計相較於傳統影像基礎式(Video-based)擴增實境具有正面的效度與魅力,具有實際應用的潛力。本研究成果將能提供應用於觸控螢幕上的擴增實境操縱介面之設計參考,提高此類擴增實境環境中的物理真實度,讓使用者能更加投入。未來可應用於互動電玩遊戲或虛擬介面操作中,增進過程中的體感效果並加強操作介面之感受深度。

    Augmented Reality (AR) is a term that allows virtual object augmented into physical real world, generated by real-time computing and interaction with user. This technique has become familiar with the masses since been used in multimedia field nowadays.
    In AR environment, human perception could help virtual object mixing with real environment to intensify its reality. Human’s sensory sometimes make a cross effect on each other, by controlling visual effects and interactive feedback on touch-screen, we could take advantage of cross-sensory interaction to create a tactile illusion called pseudo-haptic (Biocca, Kim, & Choi, 2001; Le´cuyer, 2009).
    This investigation focus on this field, describe the theory and experiment plan of making virtual perception in AR-environment with touch screen interface; implement pseudo-haptic AR system on a Tablet PC, without additional device, generate a sense of touch by pushing and pressing operation, probing into physical property of augmented objects. The experiment is inspired by Nusseck’s path prediction test (Nusseck, Lagarde, Bardy, Fleming, & Bülthoff, 2007). Three experiments were been carried out; each experimental environment is constrained to a simple object interaction.
    Experiment 1: Participants perceive a virtual object augmented in real world on touch screen and report the physical property (elasticity, density and friction) of that augmented object by 5 point Likert scale. Experiment 2: Continued from the previous experiment, participants performed an interactive task such as pushing or moving an augmented virtual object, even to interact with another augmented virtual object. This study is trying to compare the reported value from perceiving the virtual ball with the actual elasticity, density and friction parameter. Experiment 3: Participants operate and distinguish five different types of virtual material applied on the augmented virtual balls in the scene, and make a confusion matrix of all samples. Experiment 4: In addition the user study is conducted to address the subjective assessment of workload and joyful.
    The result shows that participant’s allocated score is in direct ratio to the actual parameter, but the accuracy of reported value is not quite high since human’s perception of static and dynamic scenes is not very sensitive. The addition of dynamic clue and interactive feedback can improve the performance of participants, making their prediction closer to the exact value and correct the interference of sample’s volume. Moreover, the subjective assessments significantly increase in the second experiment, although the addition of control object cause higher workload, participants still prefers the interactive version.
    Compare to the traditional video-based AR system on touch screen, the Pseudo-haptic AR system represent better performance and higher fascination. This design has plenty of potential to be practical use. The result could be applied in AR interface design in touch-screen environment, increasing physical fidelity on AR platform, being helpful on operating video game or virtual interface, enhance the effect of motion sensing and the depths of presence.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 IX 表目錄 XIII 1. 緒論 1 1-1研究背景 1 1-2研究動機 2 1-3研究目的 3 1-4研究範圍與限制 3 1-5論文架構 4 2. 文獻探討 6 2-1擴增實境 6 2-1.1觸控式螢幕 7 2-1.2可攜式智慧設備 8 2-2認知心理學 8 2-2.1刺激-反應理論 9 2-2.2訊息處理模型 9 2-3知覺 10 2-3.1感知 10 2-3.2共感覺 11 2-3.3聯覺 11 2-4虛幻感覺 12 2-4.1觸覺擴增實境 12 2-4.2擬似手感 13 3. 研究方法 15 3-1理論模型 16 3-1.1聯覺效應之運作模型 16 3-1.2認知模型 18 3-1.3動作分類 19 3-1.4小結 20 3-2實驗設計 22 3-2.1擴增實境系統建構 22 3-2.2智慧型手持設備 23 3-2.3實驗場景架設 24 3-3實驗程式架構 26 3-3.1程式架構解說 26 3-3.2轉換座標控制 28 3-4實驗內容 31 3-4.1受測者選擇 31 3-4.2實驗規劃 32 3-4.3實驗步驟 34 3-5實驗執行流程 37 3-5.1觀看回合-只有被動的視覺線索 38 3-5.2操作回合-可操作並接收主動的視覺線索 42 3-5.3材質分辨-物理特性配對實驗 45 3-5.4主觀量表-身心負荷量表 48 4. 結果與分析 49 4-1研究方法 49 4-1.1評估指標 49 4-1.2統計方法 49 4-2正確程度 51 4-2.1彈性階段 51 4-2.2密度階段 54 4-2.3摩擦力階段 57 4-2.4兩回合比較 60 4-2.5小結 61 4-3任務時間 65 4-3.1彈性階段 65 4-3.2密度階段 66 4-3.3摩擦力階段 68 4-3.4小結 69 4-4材質混淆矩陣 71 4-5主觀負荷量表 72 4-5.1各階段主觀負荷程度評分 72 4-5.2觀看與操作回合之比較 73 4-5.3意願度 74 5. 討論與結論 75 5-1實驗解讀 75 5-1.1效果 75 5-1.2可能問題 76 5-2討論 76 5-2.1物理知覺的特色 77 5-2.2天真物理 77 5-2.3實驗檢討 78 5-3研究成果 78 5-3.1擴增實境應用程式化 78 5-3.2後續研究建議 79 參考文獻 80 附錄 82 附錄一 82 附錄二 87

    Azuma, R. T. (1997). A Survey of Augmented Reality. In Presence, 6(Teleoperators and Virtual Environments).
    Biocca, F., Kim, J., & Choi, Y. (2001). Visual Touch in Virtual Environments: An Exploratory Study of Presence, Multimodal Interfaces, and Cross-Modal Sensory Illusions. Presence: Teleoper. Virtual Environ., 10(3), 247-265.
    Chin, J. P., Diehl, V. A., & Norman, K. L. (1988). Development of an instrument measuring user satisfaction of the human-computer interface. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems.
    DreamWorks Pictures, & Paramount Pictures. (2009). WE ARE AUTOBOTS. Retrieved Nov 6, 2010, from http://www.weareautobots.com
    Höllerer, T. H., & Feiner, S. K. (2004). Mobile Augmented Reality Telegeoinformatics: Location-Based Computing and Services: Taylor&Francis Bool Ltd.
    Jeon, S., & Choi, S. (2009). Haptic augmented reality: Taxonomy and an example of stiffness modulation. Presence: Teleoper. Virtual Environ., 18(5), 387-408.
    Jonghyun Ryu, J. J., Gunhyuk Park, Seungmoon Choi. (2010). Psychophysical Model for Vibrotactile Rendering in Mobile Devices. Presence, 19(4), 25.
    Kato, H., & Human Interface Technology Laboratory. (1994). ARToolKit. Retrieved Nov 6, 2010, from http://www.hitl.washington.edu/artoolkit/
    Khatri, S. (2009). Touch Screen Interfaces Continue to Drive Growth in Signage and Professional Applications El Segundo, California: iSuppli Corporation.
    Krueger, M. W. (1991). Artificial reality II: Addison-Wesley.
    Layer™. (2010). Layer™. Retrieved Nov 10, 2010, from http://www.layar.com/
    Le´cuyer, A. (2009). Simulating haptic feedback using vision: A survey of research and applications of pseudo-haptic feedback. Presence: Teleoper. Virtual Environ., 18(1), 39-53.
    Mcgurk, H., & Macdonald, J. (1976). Hearing lips and seeing voices. Nature, 264(746 - 748).
    Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information Systems, E77-D(12).
    Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1994). Augmented Reality: A class of displays on the reality-virtuality continuum. Telemanipulator and Telepresence Technologies, 2351.
    Narumi, T., Sato, M., Tanikawa, T., & Hirose, M. (2010). Evaluating cross-sensory perception of superimposing virtual color onto real drink: toward realization of pseudo-gustatory displays. Paper presented at the Proceedings of the 1st Augmented Human International Conference.
    Noma, H., Yoshida, S., Yanagida, Y., & Tetsutani, N. (2004). The proactive desk: a new haptic display system for a digital desk using a 2-DOF linear induction motor. Presence: Teleoper. Virtual Environ., 13(2), 146-163.
    Nusseck, M., Lagarde, J., Bardy, B., Fleming, R., & Bülthoff, H. H. (2007). Perception and prediction of simple object interactions. Paper presented at the Proceedings of the 4th symposium on Applied perception in graphics and visualization.
    O'Sullivan, C. (2005). Collisions and Attention. ACM Transactions on Applied Perception, 2(3), 309-321.
    Robert L, S. (1992). 認知心理學 (黃希庭, 李文權 & 張慶林, Trans. 2 ed.): 五南圖書出版公司.
    Sandra G. Hart, L. E. S. (1988). Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research Advances in Psychology, 52(Human Mental Workload ), 46.
    Saqoosha, & R.Iizuka. (2009, 2010 Jul 10). FLARToolKit. Retrieved Nov 6, 2010, from http://www.libspark.org/wiki/saqoosha/FLARToolKit
    SCE Japan Studio. (2007). The Eye of Judgment™. Retrieved Aug 11, 2011, from http://www.eyeofjudgment.com/
    SCE London Studio, & Playlogic Game Factory. (2009). EyePet™. Retrieved Aug 8, 2011, from http://www.eyepet.com/
    Slater, M., & Steed, A. (2000). A Virtual Presence Counter. Presence: Teleoper. Virtual Environ., 9(5), 413-434.
    The World Bank. (2009). World Development Indicators. from The World Bank Group: http://data.worldbank.org/data-catalog/world-development-indicators?cid=GPD_WDI
    Wagner, I., Broll, W., Jacucci, G., Kuutii, K., McCall, R., Morrison, A., et al. (2009). On the Role of Presence in Mixed Reality. Presence, 18(4).
    Wiener, N. (1973). Cybernetics or control and communication in the animal and the machine: M.I.T. press.
    Wikitude™. (2010). Wikitude™. Retrieved Nov 6, 2010, from http://www.wikitude.org/
    Yatani, K., & Truong, K. N. (2009). SemFeel: a user interface with semantic tactile feedback for mobile touch-screen devices. Paper presented at the Proceedings of the 22nd annual ACM symposium on User interface software and technology.
    中華國際黃頁股份有限公司. (2010). hiPage 搜go!™. Retrieved Nov 6, 2010, from http://itunes.apple.com/tw/app/id351330048?mt=8
    信義房屋仲介股份有限公司. (2010). 信義房屋iPhone App™. Retrieved Nov 6, 2010, from http://www.sinyi.com.tw/monthactive/iphone/intro/index.html

    無法下載圖示 校內:2016-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE