簡易檢索 / 詳目顯示

研究生: 黃信燁
Huang, Shin-Yeh
論文名稱: 以擬樹枝狀聚乙烯亞胺化聚丙烯醚製備鉑系燃料電池觸媒層
Preparation of Carbon-Supported Pt-based Catalysts for DMFCs through Pseudo-Dendritic Polyethyleniminated Poly(oxypropylene)diamine
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 167
中文關鍵詞: 擬樹枝狀高分子鉑系奈米粒子直接甲醇燃料電池觸媒層
外文關鍵詞: direct methanol fuel cells, catalyst, polyethyleniminated, pseudo-dendritic, Pt-based nanoparticles
相關次數: 點閱:74下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以含聚乙烯亞胺之聚丙烯醚擬樹枝狀高分子 D400(EI)20 作為高分子保護劑,以化學還原法於水相製備鉑系奈米粒子 (Pt, PtRu, PtCo and PtSn) 應用於燃料電池觸媒層。探討不同的 [N]/[Pt] 值對鉑系奈米粒子型態上的影響,另外改變合金奈米粒子中金屬的成分比例以觀察其對氧化甲醇的效果。穿透式電子顯微鏡 (TEM) 的結果顯示當 [N]/[Pt] 值超過 20 時,鉑奈米粒子無論在粒徑或粒徑分布上均無顯著的改變,此情況也可以在其他合金系統中觀察到。熱處理的目的主要是使高分子裂解而達到活化觸媒的效果,結果顯示其對粒子的型態的影響有限,另外透過 EDS 的觀察亦可發現合金粒子的組成成分與理論值相近。由 XRD 與電子繞射圖形 (Electron Diffraction Pattern)可知鉑系奈米粒子(除 Pt20Ru80、Pt20Co80 和 Pt20Sn80 外)皆呈現面心立方晶格 (face-centered cubic, fcc) 的結構。另外由繞射峰之半高寬可以約略估計晶界 (grain boundary) 的大小,其結果與 TEM 的觀察相近。XPS 顯示在所有觸媒中白金大部分皆以 Pt0 的型式存在,而在合金觸媒中的 Ru、Co 以及 Sn 則以氧化物的型式佔大部分,此種表面結構組成有利於 CO 進一步氧化成 CO2,而大大改善純白金觸媒的毒化問題。
      以循環伏安法 (cyclic voltammetry, CV) 和計時電流法 (chronoamperometry, CA) 來評估觸媒對甲醇氧化的活性。熱處理過的白金觸媒活性較未處理過的觸媒來的高,與商用的觸媒 (E-TEK) 比較可以得到類似的電化學活性表面積。 Ru 與 Co 的加入確實增加了觸媒對甲醇催化的活性,尤其在抵抗毒化的效果上, Pt50Ru50/C 和 Pt70Co30/C 觸媒分別在 PtRu 和 PtCo 合金系統中對甲醇氧化展現最好的活性。

     A dumbbell-like water-soluble copolymer, polyethyleniminated poly(oxypropylene)diamine (D400(EI)20), was used as a stabilizer to prepare carbon-supported Pt and Pt-based nanoparticles (PtRu, PtCo, and PtSn) through the reduction of sodium borohydride. The Pt nanoparticles were prepared by changing the molar ratio of D400(EI)20 to chloroplatinic acid, i.e. [N]/[Pt] = 5, 10, 20, 30, 40 and 50. The compositions of alloy nanoparticles were easily able to be controlled by adjusting the relative concentration of Pt and additive metals in the initial precursor solution (i.e. Pt80A20, Pt70A30, Pt50A50 and Pt20A80). Transmission electron microscopy showed that as the [N]/[Pt] ratio exceeded 20, nearly monodispersd particles with a small size (< 3 nm) were formed. It is possible to apply the novel stabilizer, D400(EI) 20, to prepare stable Pt-based alloy nanoparticles under the identical condition. The heat-treatment was utilized to activate catalysts through decomposition of the stabilizing shells with only a limited particle growth. The compositions of Pt and additive metals are all found to be close to that in the origin precursor solution by energy-dispersive X-ray analysis. From X-ray diffraction and electron diffraction patterns, all Pt and Pt-based nanoparticles displayed the face-centered cubic crystal structures, whereas the Pt20Ru80, Pt20Co80 and Pt20Sn80 nanoparticles showed more typical hexagonal close-packed lattice structure. The average sizes of the particles calculated from XRD peak widths are consistent with TEM results. X-ray photoelectron spectroscopy revealed that the metallic Pt0 is the predominant species in all the Pt-based catalysts. A mixed phase of Pt0 metal and Ru oxides together with a small amount of Ru metal existed in the PtRu/C catalysts. Similarly, the content of Co oxides was substantially higher in relation to Co metal in the PtCo/C catalysts. A substantial amount of Sn oxides existed in comparison with metallic Sn0 in the PtSn/C catalysts.
     The electrochemical performance of the catalysts was evaluated by cyclic voltammetry and chronoamperometry. The heat-treated catalysts were, as expected, more active than the as-prepared ones due to the successful removal of the stabilizing shells. Additionally, the electrochemical surface area of the Pt/C catalyst was found to be similar to that of the commercially available E-TEK catalyst (Pt/C, 20 wt.%). The Pt/C catalyst with the [N]/[Pt] ratio of 20 showed the best activity toward methanol electro-oxidation as compared with the [N]/[Pt] ratios of 5, 10 and 50. The presence of Ru and Co enhanced the activity of Pt toward methanol electro-oxidation. The Pt50Ru50/C and Pt70Co30/C catalysts showed the best catalytic activity toward methanol electro-oxidation and CO tolerance among the PtRu and PtCo systems, respectively and the former was a more appropriate anode catalyst than the later in this work.

    Abstract (English)..............................i Abstract (Chinese)............................iii Acknowledgement.................................v List of Tables...............................viii List of Schemes................................ix List of Figures.................................x Chapter 1. Introduction.........................1 1.1 Direct Methanol Fuel Cells (DMFCs)..........1 1.1.1 General Concepts..........................1 1.1.2 Solid Polymer Electrolyte: Proton Exchange Membrance.......................................3 1.2 Electrocatalysts for DMFCs..................5 1.2.1 General Features..........................5 1.2.2 Methods for Preparation of Carbon-Supported Metal Nanoparticles...................6 1.2.3 Catalyst Support.........................10 1.3 Improvements of Materials for DMFCs........11 1.4 Fundamental Aspects for Anodic Oxidation of Methanol.......................................12 1.4.1 Overall Reaction.........................12 1.4.2 Mechanism of Methanol Electro-Oxidation for Pt-based Electrocatalysts.................14 1.5 Promoting Effects of Ru, Sn and Co: The Bi-functional Mechanism and Ligand Effect.........15 1.5.1 PtRu Binary Electrocatalysts.............16 1.5.2 PtCo Binary Electrocatalysts.............20 1.5.3 PtSn Binary Electrocatalysts.............22 1.6 Membrane Electrode Assembly (MEA)..........26 Chapter 2. Theorems............................31 2.1 The Electrochemical Cell...................31 2.1.1 Cell Design..............................31 2.1.2 Working Electrode........................33 2.1.3 Reference Electrode......................37 2.1.4 Counter (Auxiliary) Electrode............39 2.2 Voltammetric Methods.......................40 2.2.1 Electrical Double Layer (EDL)............40 2.2.2 Two Major Classes of Voltammetry.........43 2.2.3 Potential-Step Experiment................45 2.2.4 Potential-Sweep Experiment...............47 2.2.5 Cyclic Voltammetry (CV)..................48 2.2.6 Determination of Electrochemical Active Surface (EAS) Areas............................55 2.3 Chronoamoerometry (CA).....................60 Chapter 3. Experimental Section................64 3.1 Materials..................................64 3.2 Sample Preparation.........................64 3.2.1 Synthesis of Pt Nanoparticles............64 3.2.2 Syntheses of PtRu, PtCo and PtSn Alloy Nnanoparticles.................................65 3.2.3 Preparation of Carbon-Supported Catalysts......................................66 3.2.4 Preparation of Working Electrode.........67 3.2.5 Preparation of Membrane Electrode Assembly (MEA)..........................................68 3.3 Characterizations..........................68 Chapter 4. Results and Discussion..............74 4.1 Morphology and Composition Characterization by Transmission Electron Microscopy (TEM)......74 4.1.1 Morphology and Optical Properties of As-Prepared Pt and PtRu Nanoparticles.............74 4.1.2 Morphology of As-Prepared PtCo and PtSn Nanoparticles..................................78 4.1.3 Thermal Decomposition of D400(EI)20......81 4.1.4 Physicochemical Properties of Pt/C Electrocatalysts...............................82 4.1.5 Physicochemical Properties of PtRu/C Electrocatlysts................................89 4.1.6 Physicochemical Properties of PtCo/C Electrocatlysts................................94 4.1.7 Physicochemical Properties of PtSn/C Electrocatlysts................................98 4.2 The Study of X-ray Diffraction (XRD)......101 4.2.1 XRD Patterns of Pt/C Catalysts with Different Heat-Treatment Times................101 4.2.2 XRD Patterns of PtRu/C Catalysts with Different Atomic Ratios.......................104 4.2.3 XRD Patterns of PtCo/C Catalysts with Different Atomic Ratios.......................107 4.2.4 XRD Patterns of PtSn/C Catalysts with Different Atomic Ratios.......................109 4.3 Surface Analysis by X-ray Photoelectron Spectroscopy (XPS)............................112 4.3.1 Surface Phenomenon of Pt/C and PtRu/C Catalysts.....................................112 4.3.2 Surface Phenomenon of PtCo/C Catalyst...117 4.3.3 Surface Properties of PtSn/C Catalyst...119 4.3.4 Removal of D400(EI)20 Followed by XPS Investigation.................................121 4.4 Electrochemical Characterization..........124 4.4.1 Electrochemical Behavior of Pt/C Catalysts with Different Heat-Treatment Times...........124 4.4.2 Electrochemical Behavior of Pt/C Catalysts with Different [N]/[Pt] Ratios................132 4.4.3 Electrochemical Performance of PtRu/C Catalysts.....................................137 4.4.4 Electrochemical Behavior of PtCo/C Catalysts.....................................143 4.5 Single Cell Measurement...................149 Chapter 5. General Conclusion.................151 References and Notes..........................154 Curriculum Vita...............................167

    References and Notes
    (1) James, L.; Andrew D. Fuel Cell Explained, John Weiley, England, 2003.
    (2) Chan, K. Y.; Ding, J.; Ren, J.; Cheng, S.; Tsang, K. Y. J. Mater. Chem. 2004, 14, 505.
    (3) (a) Hamnett, A. Catal. Today 1997, 38, 445. (b) Eikerling, M.; Loselevich, A. S.; Kornyshev Fuel Cells 2004, 4, 131. (c) Marković N. M.; Schmidt, T. J.; Stamenkovic, V.; Ross, P. N. Fuel Cells 2001, 1, 105.
    (4) (a) Carrette, L.; Friedrich, K. A.; Stimming, U. Chem. Phys. Chem. 2000, 1, 162. (b) Lamy, C.; Lima, A.; LeRhun, V.; Delime, F.; Coutanceau, C.; Léger, J. M. J. Power Sources 2002, 105, 283.
    (5) (a) Eichstadt, A. E.; Ward, T. C.; Bagwell, M. D.; Farr, I. V.; Dunson, D. L.; McGraph, J. E. Macromolecules 2002, 35, 7561. (b) Yang, Y.; Shi, Z.; Holdcroft, S. Macromolecules 2004, 37, 1678. (c) Wang, L.; Meng, Y. Z.; Wang, S. J.; Shang, X. Y.; Li, L.; Hay, A. S. Macromolecules 2004, 37, 3151. (d) Miyatake, K.; Chikashige, Y.; Watanabe, M. Macromolecules 2003, 36, 9691. (e) Einsla, B. R.; Hong, Y. T.; Kim, Y. S.; Wang, F.; Gunduz, N.; McGraph J. E. J. Polym. Sci. Poly. Chem. 2004, 42, 862. (f) Genova-Dimitrova, P.; Baradie, B.; Foscallo, D.; Poinsignon, C.; Sanchez, J. Y. J. Membrane Sci. 2001, 185, 59. (g) Tadanaga, K.; Yoshida, H.; Matsuda, A.; Minami, T.; Tatsumisago, M. Chem. Mater. 2003, 15, 1910.
    (6) Grove, W. R., On Gaseous Voltaic Battery, Philos. Mag. 1842, 21(3), 417.
    (7) Bönnemann, H.; Richards, R. M. Eur. J. Inorg. Chem. 2001, 2455.
    (8) (a) Shen, P. K.; Tian, Z. Electrochim. Acta 2004, 49, 3107. (b) Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun and Q. Xin, Chem. Commun. 2003, 394.
    (9) Schmidt, T. J.; Gasteiger, H. A.; Behm, R. J. Electrochem. Commun. 1999, 1, 1.
    (10) (a) Curtis, A. C.; Duff, D. G.; Edwards, P. P.; Jefferson, D. A.; Johnson, B. F. G.; Kirkland, A. I.; Wallace, A. S. J. Phys. Chem. 1988, 92, 2270. (b) Wang, Y.; Ren, J.; Deng, K.; Gui, L.; Tang, Y. Chem. Mater. 2000, 12, 1622.
    (11) Zhang, X.; Chan, K. Y. Chem. Mater. 2003, 15, 451.
    (12) (a) Che, G.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R. Nature 1998, 393, 346. (b) Wang, C.; Waje, M.; Wang, X.; Tang, J. M.; Haddon, R. C.; Yan, Y. Nano Lett. 2003, 4, 345. (c) Matsumoto, T.; Komatsu, T.; Arai, K.; Yamazaki, T.; Kijima, M.; Shimizu, Y.; Nakamura, J. Chem. Comm. 2004, 840. (d) Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou, Z.; Sun, G.; Xin, Q. J. Phys. Chem. B 2003, 107, 6292. (e) Liu, Z.; Lin, X.; Lee, J. Y.; Zhang, W.; Han, M.; Gan, L. M. Langmuir 2002, 18, 4054. (f) Steigerwalt, E. S.; Deluga, G. A.; Lukehart, C. M. J. Phys. Chem. B 2002, 106, 760. (g) Han, K. I.; Lee, J. S.; Park, S. O.; Lee, S. W.; Park, Y. W.; Kim, H. Electrochim. Acta 2004, 50, 791. (h) Sun, C. L.; Chen, L. C.; Su, M. C.; Hong, L. S.; Chyan, O.; Hsu, C. Y.; Chen, K. H.; Chang, T. F.; Chang, L. Chem. Mater. 2005, 17, 3749. (i) Tang, H.; Chen, J.; Nie, L.; Liu, D.; Deng, W.; Kuang, Y.; Yao, S. J. Colloid Interface Sci. 2004, 269, 26.
    (13) (a) Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B 1999, 103, 7743. (b) Toebes, M. L.; van der Lee, M. K.; Tang, L. M.; Huis in ‘t Veld, M. H.; Bitter, J. H.; Jos van Dillen, A.; de Jong, K. P. J. Phys. Chem. B. 2004, 108, 11611.
    (14) (a) Yu, J. S.; Kang, S.; Yoon, S. B.; Chai, G. J. Am. Chem. Soc. 2002, 124, 9382. (b) Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 2001, 412, 169. (c) Raghuveer, V.; Manthiram, A. J. Electrochem. Soc. 2005, 152, A1504.
    (15) Bockris, J. O`M.; Srinivasan, S.; Fuel Cells : Their Electrochemistry, McGraw-Hill Book Company, New York, 1969.
    (16) Parsons, R.; Van der Noot, T. J. Electroanal. Chem. 1988, 257, 9.
    (17) Bagotzky, V. S.; Vassiliev, Yu. B.; Khazova O. A. J. Electroanal. Chem. 1977, 81, 229.
    (18) (a) Neergat, M.; Leveratto, D.; Stimming, U. Fuel Cells 2002, 2, 25. (b) Sarma, L. S.; Lin, T. D.; Tsai, Y. W.; Chen, J. M.; Huang, B. J. J. Power Sources 2005, 139, 44. (c) Xue, X.; Lu, T.; Liu, C.; Xing, W. Chem. Comm. 2005, 1601.
    (19) (a) Manzo-Robledo, A.; Boucher, A. C.; Pastor, E.; Alonso-Vante, N. Fuel Cells 2002, 2, 109. (b) Jiang, L.; Sun, G.; Zhou, Z.; Zhou, W.; Xin, Q. Catal. Today 2004, 93-95, 665. (c) Lamy, C.; Rousseau, S.; Belgsir, E. M.; Coutanceau, C.; Léger, J. M. Electrochim. Acta 2004, 49, 3901. (d) Rivera-Casado, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vázquez-Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruña, H. D. J. Am. Chem. Soc. 2004, 126, 4043.
    (20) Gurau, B.; Viswanathan, R.; Liu, R.; Lafrenz, T. J.; Ley, K. L.; Smotkin, E. S.; Reddington, E.; Sapienza, A.; Chan, B. C.; Mallouk, T. E.; Sarangapani, S. J. Phys. Chem. B 1998, 102, 9997.
    (21) (a) Gokagac, G.; Léger, J. M.; Hahn, F.; Lamy, C. J. Electrochem. Soc. 2001, 4, 174. (b) Samjeské, G.; Wang, H.; Löffler, T.; Baltruschat, H. Electrochim. Acta 2002, 47, 3681.
    (22) (a) Yu, P.; Pemberton, M.; Plasse, P. J. Power Sources 2005, 144, 11. (b) Neto, A. O.; Vasconcelos, T. R. R.; Da Silva, R. W. R. V.; Linardi, M.; Spinacé, E. V. J. Appl. Electrochem. 2005, 35, 193. (c) Antolini, E.; Salgado, J. R. C.; Gonzalez, E. R. J. Electroanal. Chem. 2005, 580, 145. (d) Xiong, L.; Kannan, A. M.; Manthiram, A. Electrochem. Commun. 2002, 4, 898.
    (23) (a) Shukla, A. K.; Neergat, M.; Bera, P.; Jayaram, V.; Hegde, M. S. J. Electroanal. Chem. 2001, 504, 111. (b) Deivaraj, T. C.; Chen, W.; Lee, J. Y. J. Mater. Chem. 2003, 13, 2555.
    (24) (a) Watanabe, M.; Motoo, S. J. Electroanal. Chem. 1975, 60, 275. (b) Marković, N. M.; Gasteriger, H. A.; Ross, P. N. Electrochim. Acta 1995, 40, 91.
    (25) Ticianelli, E.; Berry, J. G.; Paffet, M. T.; Gottesfeld, S. J. Electroanal. Chem. 1977, 81, 229.
    (26) Iwasita, T.; Nart, F. C.; Vielstich, W. Ber. Bunsenges Phys. Chem. 1990, 94, 1030.
    (27) (a) Frelink, T.; Visscher, W.; van Veen, J. A. R. Surface Sci. 1995, 335, 353. (b) Frelink, T.; Visscher, W.; van Veen, J. A. R. Langmuir 1996, 12, 3702.
    (28) Mc Breen, J.; Mukerjee, S. J. Electrochem. Soc. 1995, 142, 1409.
    (29) Iwasita, T; Hoster, H.; John-Anacker A.; Lin, W. F.; Vielstich, W. Langmuir, 2000, 16, 522.
    (30) Shukla, A. K.; Aricò, A. S.; El-Khatib, M. K.; Kim, H.; Antonucci, P. L.; Antonucci, V. Appl. Surf. Sci. 1999, 137, 20.
    (31) Rolison, P. R.; Hagans, P. L.; Swider, K. E. Langmuir 1999, 15, 774.
    (32) (a) Buckley, A. N.; Kennedy, B. J. J. Electroanal. Chem. 1991, 302, 261. (b) Hamnett, A.; Kennedy, B. J., Wangner, F. E. J. Catal. 1990, 124, 30.
    (33) Ren, X.; Wilson, M. S.; Gottesfeld, S. J. Electrochem. Soc. 1996, 143, L12.
    (34) Zhou, W. J.; Zhou, B.; Li, W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Goula, M.; Tsiakaras P. J. Power Sources 2004, 126, 16.
    (35) Wasmus, S.; Küver, A. J. Electroanal. Chem. 1999, 461, 14.
    (36) Ioroi, T.; Yasuda, K.; Siroma, Z.; Fujiwara, N. J. Electrochem. Soc. 2003, 150, A1225.
    (37) (a) Paulus, U. A.; Wokaun, A.; Scherer, G. G.; Schmidt, T. J.; Stamenkovic, V.; Radmilovic, V.; Markovic, N. M.; Ross, P. N. J. Phys. Chem. B 2002, 106, 4181. (b) Neergat, M.; Shukla, A. K.; Gandhi, K. S. J. Appl. Electrochem. 2001, 31, 373.
    (38) Yu, E. H.; Scott, K.; Reeve, R. W. J. Electroanal. Chem. 2003, 547, 17.
    (39) Okada, T.; Suzuki, Y.; Hirose, T.; Ozawa, T. Electrochim. Acta 2004, 49, 385.
    (40) Page, T.; Johnson, R.; Hormes, J.; Noding, S.; Rambabu, B. J. Electroanal. Chem. 2000, 485, 34.
    (41) (a) Goodenough, J. B.; Manoharan, R.; Shukla, A. K.; Ramesh, K. V. Chem. Mater. 1989, 1, 391. (b) Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. J. Electrochem. Soc. 1999, 146, 3750.
    (42) Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Brussels, 1963.
    (43) Beard, B. C.; Ross, P. N. J. Electrochem. Soc. 1990, 137, 3368.
    (44) Salgado, J. R. C.; Antolini, E.; Gonzalez, E. R. J. Power Sources 2004, 138, 56.
    (45) Aricò, A. S.; Srinicasan, S.; Antonucci, V. Fuel Cells 2001, 1, 133.
    (46) Aricò, A. S.; Antonucci, V.; Giordano, N.; Shukla, A. K.; Ravikumar, M. K.; Roy, A.; Barman, S. R.; Sarma, D. D. J. Power Sources 1994, 50, 295.
    (47) Janssen, M. M. P.; Moolhuysen, J. Electrochim. Acta 1976, 21, 861.
    (48) Watanabe, M.; Furuuchi, Y.; Motoo, S. J. Electroanal. Chem. 1985, 191, 367.
    (49) (a) Haner, A. N.; Ross, P. N. J. Phys. Chem. 1991, 95, 3740. (b) Campell, S. A.; Parsons, R. J. Chem. Soc. Faraday Trans. 1992, 88, 833.
    (50) (a) Frelink, T.; Visscher, W.; van Veen, J. A. R. Electrochim. Acta 1994, 39, 1871. (b) Bittins-Cattaneo, B.; Iwasita, T. J. Electroanal. Chem. 1987, 238, 151.
    (51) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, Wiley-Interscience, New York, 1980.
    (52) Markovic, N.; Widekov, A.; Ross, P. N.; Monteiro, O. R.; Brown, I. G. Catal. Lett. 1997, 43, 161.
    (53) Zhou, W. J.; Song, S. Q.; Li, W. Z.; Zhou, Z. H.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Tsiakaras P. J. Power Sources 2005, 140, 50.
    (54) Jiang, L.; Zhou, Z.; Li, W.; Zhou, W.; Song, S.; Li, H.; Sun, G.; Xin, Q. Energy & Fuels 2004, 18, 866.
    (55) Aricò, A. S.; Creti, P.; Giordano, N.; Antonucci, V.; Antonucci, P. L.; Chuvilin, A. J. Appl. Electrochem. 1996, 26, 959.
    (56) Aricò, A. S.; Creti, P.; Giordano, N.; Cho, J.; Kim, H.; Antonucci, P. L.; Antonucci, V. Electrochim. Acta 1998, 43, 3719.
    (57) Gosser, D. K.; Cyclic Voltammetry : simulation and analysis of reaction mechanism, VCH Publisher Inc., 1993.
    (58) Bond, A. M.; Broadening Electrochemical Horizons – Principles and Illustration of Voltammetric and Related Techniques, Oxford University Press Inc., New York, 2002.
    (59) Bockris, J. O’M.; Reddy, A. K. N.; Gamboa-Aldeco, M.; Modern Electrochemistry 2nd ed., Kluwer Academic / Plenum Publishers, New York, 2000.
    (60) Wang, J.; Analytical Electrochemistry, 2nd ed., Wiley-VCH, New York, 2000.
    (61) Bard, A. J.; Faulkner, L. R.; Electrochemical Methods : Fundamentals and Applications, 2nd ed., John Wiley & Sons Inc., 2001.
    (62) Bagotzky, V. S.; Fundamentals of Electrochemistry, Plenum Press, New York, 1993.
    (63) Christensen, P. A.; Hamnett, A.; Techniques and Mechanisms in Electrochemistry, Chapman & Hall, 1994.
    (64) Nicholson, R. S.; Shain, I. Anal. Chem. 1964, 36, 706.
    (65) (a) Vielstich, W.; Lamm, A.; Gasteiger, H. A.; Handbook of Fuel Cells : Fundamentals Technology and Applications, John Wiley & Sons Inc., 2003. (b) Sawyer, D. T.; Sobkowiak, A.; Roberts, J. L. Electrochemistry for Chemists, John Wiley & Sons Inc., 1995.
    (66) (a) Kinoshita, K.; Ferrier, D. R.; Stonehart, P. Electrochim. Acta 1978, 23, 45. (b) Kinoshita, K.; Lundquist, J.; Stonehart, P. J. Catal. 1973, 31, 325.
    (67) Brunnauer, S.; Emmet, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309.
    (68) Trasatti, S.; Petrii, O. A. Pure Appl. Chem. 1991, 63, 735.
    (69) Will, F. J. Electrochem. Soc. 1965, 112, 451.
    (70) (a) Gilman, S. J. Phys. Chem. 1962, 67, 78. (b) Gilman, S.; in Electroanalytical Chemistry – A Series of Advances, A. J. Bard (Ed), Marcel Dekker, New York, Vol. 2, p. 112, 1967.
    (71) Breiter, M.; Kammermeier, H.; Knorr, C. A. Elektrochem. 1956, 60, 37.
    (72) Woods, R. J. Electroanal. Chem. 1974, 49, 217.
    (73) Gilman, S. J. Electroanal. Chem. 1964, 7, 382.
    (74) Rieger, P. H.; Electrochemistry, Chapman & Hall, New York, 1993.
    (75) (a) Kuo, P. L., Liang, W. J., Wang, F. Y. J. Polym. Sci. Poly. Chem. 2003, 41, 1360. (b) Kuo, P. L.; Chen, W. F. J. Phys. Chem. B 2003, 107, 11267. (c) Kuo, P. L.; Chen, C. C.; Jao, M. W. J. Phys. Chem. B 2005, 109, 9445. (d) Kuo, P. L.; Ghosh, S. K.; Liang, W. J.; Hsieh, Y. T. J. Polym. Sci. Poly. Chem. 2001, 39, 3018.
    (76) (a) Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M. J. Phys. Chem. B 1999, 103, 3818. (b) Zhao, S. Y.; Chen, S. H.; Wang, S. Y.; Li, D. G.; Ma, H. Y. Langmuir 2002, 18, 3315.
    (77) Furlong, D. N.; Launikonis, A.; Sesse, W. H. F.; Sanders, L. V. J. Chem. Soc., Faraday Trans. 1 1984, 80, 571.
    (78) Parvulescu, V. I.; Coman, S.; Palade, P.; Macovei, D.; Teodorescu, C. M.; Filoti, G.; Molina, R.; Poncelet, G.; Wagner, F. E. Appl. Surf. Sci. 1999, 141, 164.
    (79) Deivaraj, T. C.; Lee, J. Y. J. Power Sources 2005, 142, 43.
    (80) Liu, Z.; Ling, X. Y.; Su, X.; Lee, J. Y. J. Phys. Chem. B 2004, 108, 8234.
    (81) Giordano, N.; Passalacqua, E.; Pino, L.; Aricò, A. S.; Antonucci, V.; Vivaldi, M.; Kinoshita, K. Electrochim. Acta 1991, 36, 1979.
    (82) Peuckert, M.; Yoneda, T.; Dalla Betta, R. A.; Boudart, M. J. Electrochem. Soc. 1986, 113, 944.
    (83) Kim, T.; Takahashi, M.; Nagai, M.; Kobayashi, K. Electrochim. Acta 2004, 50, 817.
    (84) (a) Chai, G. S.; Yoon, S. B.; Yu, J. S.; Choi, J. H.; Sung, Y. E. J. Phys. Chem. B 2004, 108, 7074. (b) Hutchinson, J. M., Jr. Platinum Met. Rev. 1972, 16, 88.
    (85) Cullity, B. D., Elements of X-Ray Diffraction (3rd edition), Addison-Wesley Publishing Co., Inc., Reading, MA, 1956.
    (86) (a) Yang, H.; Vogel, W.; Lamy, C.; Alonso-Vante, N. J. Phys. Chem. B 2004, 108, 11024. (b) Zhou, Z.; Wang, S.; Zhou, W.; Jiang, L.; Wang, G.; Sun, G.; Zhou, B.; Xin, Q. Phys. Chem. Chem. Phys. 2003, 5, 5485.
    (87) (a) Lu, Q.; Yang, B.; Zhuang, L.; Lu, J. J. Phys. Chem. B 2005, 109, 1715.
    (88) (a) Park, K. W.; Choi, J. H.; Kwon, B. K.; Lee, S. A.; Sung, Y. E.; Ha, H. Y.; Hong, S. A.; Kim, H. Y.; Wieckowski, A. J. Phys. Chem. B 2002, 106, 1869. (b) Carmo, M.; Paganin, V. A.; Rosolen, J. M.; Gonzalez, E. R. J. Power Sources, 2005, 142, 169.
    (89) Jiang, J.; Kucernak, A. Chem. Mater. 2004, 16, 1362.
    (90) Antilini, E.; Cardellini, F. J. Alloy Comp. 2001, 315, 118.
    (91) Zhang, X.; Tsang, K. Y.; Chan, K. Y. J. Electroanal. Chem. 2004, 573, 1.
    (92) Xiong, L.; Manthiram, A. J. Electrochem. Soc. 2005, 152, A697.
    (93) Zhang, X.; Chan, K. Y. J. Mater. Chem. 2002, 12, 1203.
    (94) Jiang, L.; Sun, G.; Zhao, X.; Zhou, Z.; Yan, S.; Tang, S.; Wang, G.; Zhou, B.; Xin, Q. Electrochim. Acta 2005, 50, 2371.
    (95) Audo, C.; Lambert, J. F.; Che, M.; Didillon, B. Catal. Today 2001, 65, 157.
    (96) Zhou, W. J.; Zhou, Z. H.; Song, S. Q.; Li, W. Z.; Sun, G. Q.; Tsiakaras P.; Xin, Q. Appl. Catal. 2003, 46, 273.
    (97) Wang, X.; Hsing, I. M. Electrochim. Acta 2002, 47, 2981.
    (98) Moulder, J. F.; Stick, W. F.; Sobol, P. E.; Bomben, K. D. In; Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer: Eden Prairie, MN, 1992.
    (99) Woods, R. J. Electroanal. Chem. 1976, 9, 1.
    (100) Pcuckert, M. Electrochim. Acta 1984, 29, 1315.
    (101) (a) Aricò, A. S.; Poltarzewski, Z.; Kim, H.; Morana, A.; Giordano, N.; Antonucci, V. J. Power Sources 1995, 55, 159. (b) Aricò, A. S.; Shukla, A. K.; Kim, H.; Park, S.; Min, M.; Antonucci, V. Appl. Surf. Sci. 2001, 172, 33.
    (102) (a) Yang, B.; Lu, Q.; Wang, Y.; Zhuang, L.; Lu, J.; Liu, P.; Wang, J.; Wang, R. Chem. Mater. 2003, 15, 3552. (b) Hüfner, S.; Wertheim, G. K. Phys. Rev. B 1975, 11, 678.
    (103) (a) Liu, Z.; Lee, J. Y.; Chen, W.; Han, M.; Gan L. M. Langmuir 2004, 20, 181. (b) Baer, Y.; Heden, P. F.; Hederman, J.; Klasson, M.; Nording, C.; Siegbahn, K. Phys. Scr. 1970, 1, 55.
    (104) (a) Liu, Z.; Gan L. M.; Hong, L.; Chen, W.; Lee, J. Y. J. Power Sources 2005, 139, 73. (b) Shukla, A. K.; Ravikumar, M. K.; Roy, A.; Barman, S. R.; Sarma, D. D.; Aricò, A. S.; Antonucci, V.; Pino, L.; Giordano, N. J. Electrochem. Soc. 1994, 141, 1517.
    (105) (a) Roth, C.; Goetz, M.; Fuess, H. J. Appl. Electrochem. 2001, 31, 793. (b) Eberhardt, W. E.; Fayet, P.; Cox, D. M.; Fu, X.; Kalder, A.; Sherwood, R.; Sondericker, D. Phys. Rev. Lett. 1990, 64, 780.
    (106) Prabhuram, J.; Wang, X.; Hui, C. L.; Hsing, I. M. J. Phys. Chem. B 2003, 107, 11057.
    (107) (a) Aricò, A. S.; Creti, P.; Kim, H.; Mantegna, R.; Giordano, N.; Antonucci, V. J Electrochem. Soc. 1996, 143, 3950. (b) Aricò, A. S.; Creti, P.; Modica, E.; Monforte, G.; Baglio, V.; Antonucci, V. Electrochim. Acta 2000, 45, 4319.
    (108) (a) Aricò, A. S.; Baglio, V.; Di Blasi, A.; Modica, E.; Antonucci, P. L.; Antonucci, V. J. Electroanal. Chem. 2003, 557, 167. (b) Aricò, A. S.; Baglio, V.; Di Blasi, A.; Modica, E.; Monforte, G.; Antonucci, V. J. Electroanal. Chem. 2005, 576, 161.
    (109) (a) Swider, K. E.; Hagans, P. L.; Merzbacher, C. I.; Rolison, D. R. Chem. Mater. 1997, 9, 1248. (b) Lin, S. D.; Hsiao, T. C.; Chang, J. R.; Lin, A. S. J. Phys. Chem. B 1999, 103, 97. (c) Long, J. W.; Stroud, R. M.; Swider-Lyons, K. E.; Rolison, D. R J. Phys. Chem. B 2000, 104, 9772.
    (110) (a) Aricò, A. S.; Creti, P.; Modica, E.; Monforte, G.; Baglio, V.; Antonucci, V. Electrochim. Acta 2000, 45, 4319. (b) Knecht, J.; Stark, G.; Frensius, Z. Anal. Chem. 1978, 289, 206.
    (111) (a) Zeng, J.; Lee, J. Y. J. Power Sources 2005, 140, 268. (b) Salgado, J. R. C.; Antolini, E.; Gonzalez, E. R. J. Power Sources 2005, 141, 13.
    (112) Zsoldos, Z.; Guczi, L. J. Phys. Chem. 1992, 96, 9393.
    (113) Gautier, J. L.; Marco, J. F.; Gracia, N.; Gancedo, J. R.; de la Garza Guadarrama, V.; Nguyen-Cong, H.; Chartier, P. Electrochim. Acta 2002, 48, 119.
    (114) (a) Ye, H.; Crooks, M. J. Am. Chem. Soc. 2005, 127, 4930. (b) Fu, X.; Wang, Y.; Wu, N.; Gui, L.; Tang, Y. J. Colloid Interface Sci. 2001, 243, 326.
    (115) Luo, J.; Maye, M. M.; Han, L.; Kariuki, N. N.; Jones, V. W.; Lin, Y.; Engelhard, M. H.; Zhong, C. J. Langmuir 2004, 20, 4254.
    (116) Liu, Z.; Ling, X. Y.; Lee, J. Y.; Su, X.; Gan, L. M. J. Mater. Chem. 2003, 13, 3049.
    (117) (a) Adenier, A.; Chehimi, M. M.; Gallardo, I.; Pinson, J.; Vilà, N. Langmuir 2004, 20, 8243. (b) Hecq, A.; Delrue, J. P.; Hecq, M.; Robert, T. J. Mater. Sci. 1981, 16, 407.
    (118) (a) Sharma, J.; Chaki, N. K.; Mandale, A. B.; Pasricha, R.; Vijayamohanan, K. J. Colloid Interface Sci. 2004, 272, 145. (b) Sharma, J.; Mahima, S.; Kakade, A. B.; Pasricha, R.; Mandale, A. B.; Vijayamohanan, K. J. Phys. Chem. B 2004, 108, 13280. (c) Schmidt, T. J.; Noeske, M.; Gasteiger, A. H.; Behm, R. J.; Britz, P.; Brijoux, W.; Bönnemann, H. Langmuir 1997, 13, 2591.
    (119) Haimov, A.; Cohen, H.; Neumann, R. J. Am. Chem. Soc. 2004, 126, 11762.
    (120) (a) Xiong, L.; Manthiram, A. Electrochim. Acta 2005, 50, 2323. (b) Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi, L. J. Power Sources 2002, 105, 13.
    (121) (a) Chen, W. X.; Lee, J. Y.; Liu, Z. Chem. Comm. 2002, 2588. (b) Ding, J.; Chan, K. Y.; Ren, J.; Ziao, F. S. Electrochim. Acta 2005, 50, 3131. (c) Prabhuram, J.; Zhao, T. S.; Wong, C. W.; Guo, J. W. J. Power Sources 2004, 134, 1.
    (122) (a) Manohara, R.; Goodenough, J. B. J. Mater. Chem. 1992, 2, 875. (b) Liu, Y. C.; Qiu, X. P.; Huang, Y. Q.; Zhu, W. T. Carbon 2002, 40, 2375.
    (123) Guo, J. W.; Zhao, T. S.; Prabhuram, J.; Wong, C. W. Electrochim. Acta 2005, 50, 1973.
    (124) Steigerwalt, E. S.; Deluga, G. A.; Cliffel, D. E.; Lukehart, C. M. J. Phys. Chem. B 2001, 105, 8097.
    (125) Frelink, T.; Visscher, W.; Van Veen, J. A. R. J. Electroanal. Chem. 1995, 382, 65.
    (126) (a) Watanabe, M.; Motto, M. J. Electroanal. Chem. 1975, 60, 275. (b) McNicol, B. D.; Short, R. T. J. Electroanal. Chem. 1977, 81, 249. (c) Yahikozawa, K.; Fujii, Y.; Mittsuda Y.; Nishimura, K.; Takasu, Y. Electrochim. Acta 1991, 36, 973.
    (127) Girishkumar, G.; Vinodgopal, K.; Kamat, P. V. J. Phys. Chem. B 2004, 108, 19960.

    下載圖示 校內:2008-08-01公開
    校外:2008-08-01公開
    QR CODE