簡易檢索 / 詳目顯示

研究生: 馬志遠
Ma, Chih-Yuan
論文名稱: 研究凝血酶調節素在單核球及巨噬細胞的功能
Study on the function of thrombomodulin in monocyte/macrophage
指導教授: 吳華林
Wu, Hua-Lin
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 86
中文關鍵詞: 敗血症凝血酶調節素單核球巨噬細胞
外文關鍵詞: sepsis, thrombomodulin, monocyte, macrophage
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 敗血症起因於宿主對於細菌感染產生極高的發炎反應,進而造成器官衰竭和死亡。凝血酶調節素屬於第一型穿膜醣蛋白,能夠與凝血酶結合並活化蛋白質C,進而終止凝血反應。文獻指出單核球及巨噬細胞能夠表現凝血酶調節素,但對於凝血酶調節素在單核球及巨噬細胞中的功能並不清楚。在此研究中,我們利用核糖核酸干擾技術以及特定組織基因剔除小鼠來研究凝血酶調節素在單核球及巨噬細胞中所扮演的角色。我們發現在單核球中的凝血酶調節素能夠透過其類凝集素區域與革蘭氏陰性菌細胞壁中的脂多醣結合,並且抑制凝血酶調節素在人類單核球中的表現,可以減弱脂多醣所引起的發炎激素產生以及訊息傳遞。此外,凝血酶調節素與脂多醣在細胞表面上結合並且與CD14/類鐸受體4/骨髓分化因子-2形成複合體。我們亦發現抑制單核球中凝血酶調節素的表現會降低革蘭氏陰性菌克雷白氏肺炎桿菌所引起的細胞激素產生,顯示單核球中的凝血酶調節素對於革蘭氏陰性菌所引起的發炎反應扮演著重要的角色。為了研究單核球中的凝血酶調節素在體內的功能,我們建立了特定在髓細胞剔除凝血酶調節素的小鼠,並且發現在髓細胞缺乏凝血酶調節素的小鼠在刺激克雷白氏肺炎桿菌及闌尾結紮穿刺術後,發炎反應以及細菌擴散等敗血症狀能夠有效的被抑制,並且具有較高的存活率,而其被抑制的細菌擴散是因為早期嗜中性白血球的浸潤增加所造成。我們也觀察到缺乏凝血酶調節素的巨噬細胞具有較高的化學趨性,起因於趨化素受體在缺乏凝血酶調節素的巨噬細胞中表現增加,進而造成與細胞遷移相關的訊息傳遞增強以及增加纖維性肌動蛋白聚合的能力。我們亦發現在缺乏凝血酶調節素的巨噬細胞中巨噬細胞甘露醣受體以及介質白素-10的表現也會增加,顯示其具有M2巨噬細胞的特性。此外,黑色素瘤的生長會在髓細胞缺乏凝血酶調節素的小鼠中有增加的趨勢,且此現象與巨噬細胞的滲透能力增加有關。因此,綜合以上的結果,凝血酶調節素不僅能參與在脂多醣及革蘭氏陰性菌所引起的發炎反應,也會調控巨噬細胞的化學趨性能力,進而影響黑色素瘤的生長。

    Sepsis results from host hyperinflammatory response to bacterial infection, causing multiple organ failure and high mortality. Thrombomodulin (TM), a type I transmembrane glycoprotein, functions as an anticoagulant factor by forming complex with thrombin. TM-thrombin complex further activates protein C to terminate blood coagulation. Although the expression of TM in monocytes and macrophages has been found, the function of monocytic TM is still unclear. In this study, we used the RNA interference technique and tissue-specific knockout mice to investigate the role of TM in monocytes and macrophages in vitro and in vivo. We found that monocytic membrane-bound TM interacted with Gram-negative bacterial cell wall component, lipopolysaccharide (LPS), through its lectin-like domain, and TM knockdown in human monocytic cells attenuated LPS-induced cytokine production and signaling pathways. Furthermore, monocytic TM bound to LPS on cell surface and interacted with CD14/Toll-like receptor 4/myeloid differentiation factor-2 complex. We also found that monocytic TM knockdown reduced cytokine production induced by Gram-negative bacteria Klebsiella pneumoniae, suggesting that monocytic TM plays an important role in Gram-negative bacteria-induced inflammation. To investigate the role of monocytic TM in vivo, the myeloid-specific TM-deficient mice were established and were found to display improved survival that resulted from the attenuation of septic syndrome, including reduced systemic inflammatory response and resistance to bacterial dissemination, after K. pneumoniae infection or cecal ligation and puncture surgery. The inhibition of bacterial dissemination in mice with a deficiency of myeloid TM may be caused by the early increase in neutrophil infiltration. Increased macrophage chemotactic ability, resulting from elevated activation of migration-related signaling pathways and F-actin polymerization, was also observed in TM-deficient macrophages isolated from LysMcre/TMflox/flox mice. Up-regulated expression of chemokine receptors in TM-deficient macrophages may be the cause of enhanced chemotaxis. Notably, TM-deficient macrophages displayed M2-like polarization, since up-regulated expression of macrophage mannose receptor and interleukin-10 was found in TM-deficient macrophages. Enhanced melanoma tumor growth in LysMcre/TMflox/flox mice may result from the increase in macrophage infiltration. In conclusion, these data suggest that TM not only participates in LPS- and Gram-negative bacteria-induced inflammation but also regulates macrophage chemotaxis in melanoma tumor growth.

    1.中文摘要 1 2.Abstract 3 3.Acknowledgement 5 4.List of tables 8 5.List of figures 9 6.Abbreviations 11 7.Introduction 13 I.Thrombomodulin (TM) 13 II.Monocyte and macrophage 14 III.Macrophage-related diseases 15 IV.TM in monocyte and macrophage 16 8.Objective of this study 17 9.Materials and methods 18 I.Cell culture 18 II.Biotinylated LPS pull-down assay 19 III.Preparation of lentivirus-delivered shRNA and transduction 20 IV.Measurement of cytokines and vascular endothelial growth factor (VEGF) 21 V.LPS-induced signaling pathways 22 VI.Generation of myeloid-specific TM-deficient mice (LysMcre/TMflox/flox mice) 23 VII.Co-immunoprecipitation and immunofluorescence assays 24 VIII.Flow cytometry 26 IX.Experimental sepsis models 28 X.Chemotaxis 29 XI.Analysis of migration-related signaling pathways and F-actin polymerization 29 XII.Reverse transcription-PCR (RT-PCR) 30 XIII.Measurement of melanoma tumor growth and angiogenesis 31 XIV.Statistical analyses 31 10.Results 32 I.LPS binds to the lectin-like domain of the monocytic membrane-bound TM 32 II.TM knockdown in human monocytic cells suppresses LPS-induced signaling pathways and cytokine production 33 III.Monocytic TM knockdown specifically reduces LPS- and Gram-negative bacteria-induced cytokine production 34 IV.Establishment of myeloid-specific TM-deficient mice 35 V.Monocytic TM interacts with the CD14/TLR4/MD-2 complex and facilitates LPS binding to cell surfaces 36 VI.Improved survival and reduced septic syndrome are observed in LysMcre/TMflox/flox mice after K. pneumoniae or CLP stimulation 38 VII.Increased chemotactic ability is observed in TM- deficient macrophages 40 VIII.Migration-related signaling pathways and F-actin polymerization are elevated in TM-deficient macrophages 41 IX.TM-deficient macrophages display up-regulated expression of chemokine receptors 42 X.MMR expression and IL-10 secretion are increased in TM-deficient macrophages 43 XI.Growth, angiogenesis, and macrophage content in melanoma tumor of LysMcre/TMflox/flox mice are enhanced 44 11.Discussion 46 12.References 52 13.Tables 59 14.Figures 60 15.Publication list 83 16.Appendix I. The domain structure of TM. 85 17.Curriculum vitae 86

    1. Weiler H, Isermann BH. Thrombomodulin. J Thromb Haemost.
    2003;1:1515-1524
    2. Esmon CT, Owen WG. Identification of an endothelial cell
    cofactor for thrombin-catalyzed activation of protein c.
    Proc Natl Acad Sci U S A. 1981;78:2249-2252
    3. Owen WG, Esmon CT. Functional properties of an
    endothelial cell cofactor for thrombin-catalyzed
    activation of protein c. J Biol Chem. 1981;256:5532-5535
    4. Dittman WA, Majerus PW. Structure and function of
    thrombomodulin: A natural anticoagulant. Blood.
    1990;75:329-336
    5. McCachren SS, Diggs J, Weinberg JB, Dittman WA.
    Thrombomodulin expression by human blood monocytes and by
    human synovial tissue lining macrophages. Blood.
    1991;78:3128-3132
    6. Conway EM, Nowakowski B, Steiner-Mosonyi M. Human
    neutrophils synthesize thrombomodulin that does not
    promote thrombin-dependent protein c activation. Blood.
    1992;80:1254-1263
    7. Raife TJ, Lager DJ, Madison KC, Piette WW, Howard EJ,
    Sturm MT, Chen Y, Lentz SR. Thrombomodulin expression by
    human keratinocytes. Induction of cofactor activity
    during epidermal differentiation. J Clin Invest.
    1994;93:1846-1851
    8. Healy AM, Rayburn HB, Rosenberg RD, Weiler H. Absence of
    the blood-clotting regulator thrombomodulin causes
    embryonic lethality in mice before development of a
    functional cardiovascular system. Proc Natl Acad Sci U S
    A. 1995;92:850-854
    9. Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken
    H, De Vriese A, Weitz JI, Weiler H, Hellings PW,
    Schaeffer P, Herbert JM, Collen D, Theilmeier G. The
    lectin-like domain of thrombomodulin confers protection
    from neutrophil-mediated tissue damage by suppressing
    adhesion molecule expression via nuclear factor kappab
    and mitogen-activated protein kinase pathways. J Exp Med.
    2002;196:565-577
    10.Van de Wouwer M, Plaisance S, De Vriese A, Waelkens E,
    Collen D, Persson J, Daha MR, Conway EM. The lectin-like
    domain of thrombomodulin interferes with complement
    activation and protects against arthritis. J Thromb
    Haemost. 2006;4:1813-1824
    11.Shi CS, Shi GY, Hsiao SM, Kao YC, Kuo KL, Ma CY, Kuo CH,
    Chang BI, Chang CF, Lin CH, Wong CH, Wu HL. Lectin-like
    domain of thrombomodulin binds to its specific ligand
    lewis y antigen and neutralizes lipopolysaccharide-
    induced inflammatory response. Blood. 2008;112:3661-3670
    12.Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu
    HL. Thrombomodulin-mediated cell adhesion: Involvement of
    its lectin-like domain. J Biol Chem. 2003;278:46750-46759
    13.Kao YC, Wu LW, Shi CS, Chu CH, Huang CW, Kuo CP, Sheu HM,
    Shi GY, Wu HL. Downregulation of thrombomodulin, a novel
    target of snail, induces tumorigenesis through
    epithelial-mesenchymal transition. Mol Cell Biol.
    2010;30:4767-4785
    14.Shi CS, Shi GY, Chang YS, Han HS, Kuo CH, Liu C, Huang
    HC, Chang YJ, Chen PS, Wu HL. Evidence of human
    thrombomodulin domain as a novel angiogenic factor.
    Circulation. 2005;111:1627-1636
    15.Wei HJ, Li YH, Shi GY, Liu SL, Chang PC, Kuo CH, Wu HL.
    Thrombomodulin domains attenuate atherosclerosis by
    inhibiting thrombin-induced endothelial cell activation.
    Cardiovascular research. 2011;92:317-327
    16.Mosser DM, Edwards JP. Exploring the full spectrum of
    macrophage activation. Nat Rev Immunol. 2008;8:958-969
    17.Medzhitov R. Toll-like receptors and innate immunity. Nat
    Rev Immunol. 2001;1:135-145
    18.Trinchieri G, Sher A. Cooperation of toll-like receptor
    signals in innate immune defence. Nat Rev Immunol.
    2007;7:179-190
    19.Robinson MJ, Sancho D, Slack EC, LeibundGut-Landmann S,
    Reis e Sousa C. Myeloid c-type lectins in innate
    immunity. Nat Immunol. 2006;7:1258-1265
    20.Mantovani A, Sozzani S, Locati M, Allavena P, Sica
    ACINTIM, author reply P. Macrophage polarization: Tumor-
    associated macrophages as a paradigm for polarized m2
    mononuclear phagocytes. Trends in immunology.
    2002;23:549-555
    21.Gordon S. Alternative activation of macrophages. Nat Rev
    Immunol. 2003;3:23-35
    22.Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A,
    Locati M. The chemokine system in diverse forms of
    macrophage activation and polarization. Trends in
    immunology. 2004;25:677-686
    23.Gordon S, Martinez FO. Alternative activation of
    macrophages: Mechanism and functions. Immunity.
    2010;32:593-604
    24.Lawrence T, Natoli G. Transcriptional regulation of
    macrophage polarization: Enabling diversity with
    identity. Nat Rev Immunol. 2011;11:750-761
    25.Solinas G, Germano G, Mantovani A, Allavena P. Tumor-
    associated macrophages (tam) as major players of the
    cancer-related inflammation. Journal of leukocyte
    biology. 2009;86:1065-1073
    26.van der Poll T, Opal SM. Host-pathogen interactions in
    sepsis. Lancet Infect Dis. 2008;8:32-43
    27.Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro
    MG, Rimoldi M, Biswas SK, Allavena P, Mantovani A.
    Macrophage polarization in tumour progression. Seminars
    in cancer biology. 2008;18:349-355
    28.Hansson GK, Hermansson A. The immune system in
    atherosclerosis. Nat Immunol. 2011;12:204-212
    29.Singer AJ, Clark RA. Cutaneous wound healing. The New
    England journal of medicine. 1999;341:738-746
    30.Cohen J. The immunopathogenesis of sepsis. Nature.
    2002;420:885-891
    31.Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors,
    mediators, and mechanisms involved in bacterial sepsis
    and septic shock. Clinical microbiology reviews.
    2003;16:379-414
    32.Torisu H, Ono M, Kiryu H, Furue M, Ohmoto Y, Nakayama J,
    Nishioka Y, Sone S, Kuwano M. Macrophage infiltration
    correlates with tumor stage and angiogenesis in human
    malignant melanoma: Possible involvement of tnfalpha and
    il-1alpha. International journal of cancer. Journal
    international du cancer. 2000;85:182-188
    33.Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J,
    Harris AL. Association of macrophage infiltration with
    angiogenesis and prognosis in invasive breast carcinoma.
    Cancer research. 1996;56:4625-4629
    34.Hanada T, Nakagawa M, Emoto A, Nomura T, Nasu N, Nomura
    Y. Prognostic value of tumor-associated macrophage count
    in human bladder cancer. International journal of urology
    : official journal of the Japanese Urological
    Association. 2000;7:263-269
    35.Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H,
    Ito Y, Inamura T, Ikezaki K, Fukui M, Iwaki T, Kuwano M.
    Macrophage infiltration and heme oxygenase-1 expression
    correlate with angiogenesis in human gliomas. Clinical
    cancer research : an official journal of the American
    Association for Cancer Research. 1999;5:1107-1113
    36.Salvesen HB, Akslen LA. Significance of tumour-associated
    macrophages, vascular endothelial growth factor and
    thrombospondin-1 expression for tumour angiogenesis and
    prognosis in endometrial carcinomas. International
    journal of cancer. Journal international du cancer.
    1999;84:538-543
    37.Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of
    myeloid cells in the promotion of tumour angiogenesis.
    Nat Rev Cancer. 2008;8:618-631
    38.Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW.
    Monocyte/macrophage infiltration in tumors: Modulators of
    angiogenesis. Journal of leukocyte biology. 2006;80:1183-
    1196
    39.Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S,
    Zammataro L, Pasqualini F, Nebuloni M, Chiabrando C,
    Mantovani A, Allavena P. Tumor-conditioned macrophages
    secrete migration-stimulating factor: A new marker for
    m2-polarization, influencing tumor cell motility. J
    Immunol. 2010;185:642-652
    40.Rocha VZ, Libby P. Obesity, inflammation, and
    atherosclerosis. Nat Rev Cardiol. 2009;6:399-409
    41.Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata
    M. Decreased atherosclerosis in mice deficient in both
    macrophage colony-stimulating factor (op) and
    apolipoprotein e. Proc Natl Acad Sci U S A. 1995;92:8264-
    8268
    42.Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion
    formation in ccr2-/- mice reveals a role for chemokines
    in the initiation of atherosclerosis. Nature.
    1998;394:894-897
    43.Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P,
    Rollins BJ. Absence of monocyte chemoattractant protein-1
    reduces atherosclerosis in low density lipoprotein
    receptor-deficient mice. Molecular cell. 1998;2:275-281
    44.Combadiere C, Potteaux S, Gao JL, Esposito B, Casanova S,
    Lee EJ, Debre P, Tedgui A, Murphy PM, Mallat Z. Decreased
    atherosclerotic lesion formation in cx3cr1/apolipoprotein
    e double knockout mice. Circulation. 2003;107:1009-1016
    45.Veillard NR, Kwak B, Pelli G, Mulhaupt F, James RW,
    Proudfoot AE, Mach F. Antagonism of rantes receptors
    reduces atherosclerotic plaque formation in mice.
    Circulation research. 2004;94:253-261
    46.Grey ST, Hancock WW. A physiologic anti-inflammatory
    pathway based on thrombomodulin expression and generation
    of activated protein c by human mononuclear phagocytes. J
    Immunol. 1996;156:2256-2263
    47.Kim HK, Kim JE, Chung J, Kim YT, Kang SH, Han KS, Cho HI.
    Lipopolysaccharide down-regulates the thrombomodulin
    expression of peripheral blood monocytes: Effect of serum
    on thrombomodulin expression in the thp-1 monocytic cell
    line. Blood Coagul Fibrinolysis. 2007;18:157-164
    48.Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I.
    Conditional gene targeting in macrophages and
    granulocytes using lysmcre mice. Transgenic Res.
    1999;8:265-277
    49.Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global
    double-fluorescent cre reporter mouse. Genesis.
    2007;45:593-605
    50.Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA.
    Immunodesign of experimental sepsis by cecal ligation and
    puncture. Nature protocols. 2009;4:31-36
    51.Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global
    double-fluorescent cre reporter mouse. Genesis
    2007;45:593-605
    52.Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide
    induces physical proximity between cd14 and toll-like
    receptor 4 (tlr4) prior to nuclear translocation of nf-
    kappa b. J Immunol. 2000;165:3541-3544
    53.da Silva Correia J, Soldau K, Christen U, Tobias PS,
    Ulevitch RJ. Lipopolysaccharide is in close proximity to
    each of the proteins in its membrane receptor complex.
    Transfer from cd14 to tlr4 and md-2. J Biol Chem.
    2001;276:21129-21135
    54.Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira
    S, Kitamura T, Kosugi A, Kimoto M, Miyake K. Essential
    role of md-2 in lps responsiveness and tlr4 distribution.
    Nat Immunol. 2002;3:667-672
    55.Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamamoto S,
    Silver J, Stewart CL, Goyert SM. Resistance to endotoxin
    shock and reduced dissemination of gram-negative bacteria
    in cd14-deficient mice. Immunity. 1996;4:407-414
    56.Haziot A, Hijiya N, Gangloff SC, Silver J, Goyert SM.
    Induction of a novel mechanism of accelerated bacterial
    clearance by lipopolysaccharide in cd14-deficient and
    toll-like receptor 4-deficient mice. J Immunol.
    2001;166:1075-1078
    57.Takagi T, Taguchi O, Toda M, Ruiz DB, Bernabe PG,
    D'Alessandro-Gabazza CN, Miyake Y, Kobayashi T, Aoki S,
    Chiba F, Yano Y, Conway EM, Munesue S, Yamamoto Y,
    Yamamoto H, Suzuki K, Takei Y, Morser J, Gabazza EC.
    Inhibition of allergic bronchial asthma by thrombomodulin
    is mediated by dendritic cells. American journal of
    respiratory and critical care medicine. 2011;183:31-42
    58.Grimshaw MJ, Balkwill FR. Inhibition of monocyte and
    macrophage chemotaxis by hypoxia and inflammation--a
    potential mechanism. European journal of immunology.
    2001;31:480-489
    59.Zhang B, Ma Y, Guo H, Sun B, Niu R, Ying G, Zhang N. Akt2
    is required for macrophage chemotaxis. European journal
    of immunology. 2009;39:894-901
    60.Allen WE, Jones GE, Pollard JW, Ridley AJ. Rho, rac and
    cdc42 regulate actin organization and cell adhesion in
    macrophages. Journal of cell science. 1997;110:707-720
    61.Ishii H, Majerus PW. Thrombomodulin is present in human
    plasma and urine. J Clin Invest. 1985;76:2178-2181
    62.Iba T, Yagi Y, Kidokoro A, Fukunaga M, Fukunaga T.
    Increased plasma levels of soluble thrombomodulin in
    patients with sepsis and organ failure. Surg Today.
    1995;25:585-590
    63.Medzhitov R. Origin and physiological roles of
    inflammation. Nature. 2008;454:428-435
    64.Daubeuf B, Mathison J, Spiller S, Hugues S, Herren S,
    Ferlin W, Kosco-Vilbois M, Wagner H, Kirschning CJ,
    Ulevitch R, Elson G. Tlr4/md-2 monoclonal antibody
    therapy affords protection in experimental models of
    septic shock. J Immunol. 2007;179:6107-6114
    65.Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L,
    Worthen GS, Albelda SM. Polarization of tumor-associated
    neutrophil phenotype by tgf-beta: "N1" versus "n2" tan.
    Cancer Cell. 2009;16:183-194
    66.Gregory AD, Houghton AM. Tumor-associated neutrophils:
    New targets for cancer therapy. Cancer research.
    2011;71:2411-2416
    67.van Leeuwen M, Gijbels MJ, Duijvestijn A, Smook M, van de
    Gaar MJ, Heeringa P, de Winther MP, Tervaert JW.
    Accumulation of myeloperoxidase-positive neutrophils in
    atherosclerotic lesions in ldlr-/- mice.
    Arteriosclerosis, thrombosis, and vascular biology.
    2008;28:84-89
    68.Baetta R, Corsini A. Role of polymorphonuclear
    neutrophils in atherosclerosis: Current state and future
    perspectives. Atherosclerosis. 2010;210:1-13
    69.Roger T, Froidevaux C, Le Roy D, Reymond MK, Chanson AL,
    Mauri D, Burns K, Riederer BM, Akira S, Calandra T.
    Protection from lethal gram-negative bacterial sepsis by
    targeting toll-like receptor 4. Proc Natl Acad Sci U S A.
    2009;106:2348-2352
    70.Pillay J, den Braber I, Vrisekoop N, Kwast LM, de Boer
    RJ, Borghans JA, Tesselaar K, Koenderman LCINBJ, Pmid. In vivo labeling with 2h2o reveals a human neutrophil
    lifespan of 5.4 days. Blood. 2010;116:625-627
    71.Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD.
    Granulocyte-macrophage colony-stimulating factor (csf)
    and macrophage csf-dependent macrophage phenotypes
    display differences in cytokine profiles and
    transcription factor activities: Implications for csf
    blockade in inflammation. J Immunol. 2007;178:5245-5252

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE