簡易檢索 / 詳目顯示

研究生: 杜文玉
DU, WENYU
論文名稱: 使用含水乙醇火焰合成奈米碳管
Flame Synthesis on Carbon Nanotubes of Aqueous Ethanol
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 113
中文關鍵詞: 火焰合成油盤火焰奈米碳管含水乙醇
外文關鍵詞: Combustion Synthesis, Liquid Pool Flame, Carbon Nanotubes, Aqueous Ethanol
相關次數: 點閱:94下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用停滯面油盤燃燒器產生擴散火焰合成奈米碳管。在上燃燒器中通入不同比例的氮氧混合氣體(氧濃度15%、17%、19%、21%),下燃燒器中使用不同濃度的含水乙醇(燃料濃度80%、85%、90%、95%、99.5%)作爲燃料,探究火焰形態、溫度以及取樣位置對火焰合成奈米碳結構的影響。
    實驗中首先對火焰形態進行觀察,並測量火焰溫度。停滯面油盤燃燒器會產生藍色平面火焰。隨着燃料濃度和氧氣濃度的降低,火焰強度發生變化,表現爲亮度減弱、高度下降、溫度降低。隨後,使用鎳網格對火焰面下方不同位置(△z = 0.5, 1.0, 1.5, 2.0 mm)進行取樣,取樣時間爲1分鐘,並且使用掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)對生成結果進行分析。
    SEM結果顯示,當乙醇濃度爲99.5%,氧濃度爲19%時,△z = 1.0 mm處會大量捲曲的奈米碳管。如果固定氧濃度爲19%,降低乙醇濃度至95%,,△z = 1.0, 1.5 mm兩處有奈米碳管合成;繼續降低乙醇濃度至85%,,△z = 1.0, 1.5, 2.0 mm三處都會有奈米碳管合成。如果固定乙醇濃度爲99.5%,降低氧濃度至17%,△z = 1.0, 1.5 mm兩處有奈米碳管生長;降低氧濃度至15%,△z = 1.0, 1.5, 2.0 mm三處都會生長奈米碳管。降低燃料濃度和氧氣濃度,會使火焰溫度降低,奈米碳管的合成區間擴大,生長狀況變好。在低火焰溫度的環境下,乙醇分解產生的碳源(前驅物),能與金屬觸媒產生更有效的反應,因而利於奈米碳管的生長。其適合奈米碳管合成的溫度範圍大約為425-1010 °C。
    TEM觀察奈米碳管爲多壁奈米碳管(MWCNTs),且具有竹節狀結構。碳管的頂端和轉折處有顆粒物,可能爲催化金屬顆粒,顯示奈米碳管可能由頂端和底端生長機制合成。

    The formation and growth of carbon nanotubes (CNTs) in aqueous ethanol diffusion flames by using a liquid pool burner were experimentally studied in this research. Oxygen/nitrogen mixture of different oxygen concentrations (15%, 17%, 19%, 21%) were passed into the upper burner, and the lower burner took different volumetric ethanol concentration (80%, 85%, 90%, 95%, 99.5%) of aqueous ethanol as fuel. The carbon nanotubes under the influence of flame structures, flame height, flame temperature, and sampling position were investigated.
    The experiment started with an observation towards the shape of flame, and measuring of flame temperature. A blue flame without yellow soot layer arose on liquid pool burner. The results showed that lowering the concentration of oxygen and ethanol led to a decrease in the flame brightness, height and temperature. Nickel grids was served as the metal catalyst substrate to deposit carbon nanotubes at different sampling positions (0.5, 1.0, 1.5, 2.0 mm) below the flame surface, the sampling time was 1 minute. Additionally, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe and analyze the microstructure and morphology of generated carbon nanotubes under different experimental conditions.
    The results of SEM analysis showed that numerous curved and entangled tubular CNTs were fabricated under 19% of oxygen concentration and 99.5% of ethanol concentration at 1.0 mm below the flame surface. By lowering the ethanol concentration down to 95%, CNTs were synthesized both at 1.0 and 1.5 mm below the flame surface; by further decreasing the ethanol concentration to 85%, CNTs were produced at 1.0, 1.5, and 2.0 mm below the flame surface. Similarly, lower oxygen concentration could also facilitate the growth of CNTs. It is noteworthy that lowering the concentration of oxygen and ethanol can reduce the flame temperature and provide suitable environments for the growth of carbon nanotubes. A temperature range from 425 to 1010 degrees were suitable for fabrication CNTs.
    The TEM image showed that multi-walled (MWCNTs) were harvested, which had both typical straight and bamboo-like structures. Many catalysis metal particles were encapsulated in CNTs, which conformed the tip and base growth model of CNTs.

    CONTENTS 摘要 I Abstract III 誌謝 V CONTENTS VII LIST OF TABLES X LIST OF FIGURES XI NOMENCLATURE XVII 1. INTRODUCTION 1 1.1 Introduction of Carbon Materials 1 1.2 Flame Synthesis of Carbon Nano-Materials 2 1.2.1 Premixed Flames 3 1.2.2 Counterflow Diffusion Flames 5 1.2.3 Jet Diffusion Flames 7 1.2.4 Inverse Jet Diffusion Flames 9 1.2.5 Acoustic Modulated Jet Diffusion Flames 9 1.2.6 Liquid Fuel Flames 10 1.3 Influence of Water on Carbon Nanotubes Growth 11 1.4 Growth Mechanism of Carbon Nanotubes 12 1.5 Objectives 13 2. EXPERIMENTAL 15 2.1 Liquid-pool Diffusion Flames System 15 2.1.1 Upper Burner 15 2.1.2 Liquid Pool 15 2.2 Measurement and Sampling System 16 2.2.1 Temperature Measurements 16 2.2.2 Metal Catalyst Substrate 16 2.2.3 Camera and Image Tools 17 2.3 Analytical Instruments 17 2.3.1 High-Resolution Scanning Electron Microscopy 17 2.3.2 High-Resolution Transmission Electron Microscopy 18 2.4 EXPERIMENTAL METHODS 19 2.4.1 Parameter Setting 19 2.4.2 Flame Structures Observation 20 2.4.3 Temperature Measurements 20 2.4.4 Carbon Nanotubes Sampling 20 3. LIQUIS-POOL DIFFUSION FLAME ANALYSIS 22 3.1 Flame Structures 22 3.2 Flame Heights 23 3.3 Flame Temperatures 23 4. ANALYSIS OF CARBON NANOTUBES 26 4.1 SEM Images of Carbon Nanotubes 26 4.1.1 CE = 80% 27 4.1.2 CE = 85% 27 4.1.3 CE = 90% 28 4.1.4 CE = 95% 29 4.1.5 CE = 99.5% 29 4.1.6 Summary 30 4.2 TEM Images of Carbon Nanotubes 32 5. CONCLUTIONS 34 6. REFERENCES 36 7. TABLES AND FIGURES 44 APPENDIX 70

    REFERENCES
    [1]. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. and Smalley, R. E., “C60: Buckminsterfullerene,” Nature, Vol. 318(6042), pp. 162-163, 1985.
    [2]. Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58, 1991.
    [3]. Iijima, S., Ichihashi T., “Single-shell Carbon Nanotube of 1-nm Diameter,” Nature, Vol. 363, pp. 603-605, 1993.
    [4]. Bethune, D. S., Kiang C. H., Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R., “Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls,” Nature, Vol 363, pp. 605-607, 1993.
    [5]. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsoc, A. A., “Electric field effect in atomically thin carbon films,” Vol. 306(5696), pp. 666-669, 2004.
    [6]. Kang, J. L., Li, J. J., Du, X. W., Shi, C. S., Zhao, N. Q., and Nash, P., “Synthesis of carbon nanotubes and carbon onions by CVD using a Ni/Y catalyst supported on copper,” Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., Vol. 475(1-2), pp. 136-140, 2008.
    [7]. Andrews, R., Jacques, D., Rao, A. M., Derbyshire, F., Qian, D., Fan, X., Dickey, E. C., and Chen, J., “Continuous production of aligned carbon nanotubes: a step closer to commercial realization,” Chem. Phys. Lett., Vol. 303(5-6), pp. 467-474, 1999.
    [8]. Chen, X. C., Wang, H., and He, J. H., “Synthesis of carbon nanotubes and nanopheres with controlled morphology using different catalyst precursors,” Nanotechnology, Vol. 19(32), pp. 325607, 2008.
    [9]. Li, Y. L., Zhang, L. H., Zhong, X. H., and Windle, A. H., “Synthesis of High Purity Single-walled Carbon Nanotubes from Ethanol by Catalytic Gas Flow CVD Reactions,” Nanotechnology, Vol. 18(22), pp. 225604, 2007.
    [10]. Cabioc’h, T., Thune, E., Riviere, J. P., Camelio, S., Girard, J. C., Guerin, P., Jaouen, M., Henrard, L., and Lambin, P., “Structure and properties of carbon onion layers deposited onto various substrates,” J. Appl. Phys., Vol. 91(3), pp. 1560-1567, 2002.
    [11]. Bystrzejewski, M., Huczko, A., Lange, H., Baranowski, P., Cota-Sanchez, G., Soucy, G., Szczytko, J., and Twardowski, A., “Large scale continuous synthesis of carbon-encapsulated magnetic nanoparticles,” Nanotechnology, Vol. 18(14), pp. 145608, 2007.
    [12]. Huang, S. M., Dai, L. M., and Mau, A. W. H., “Patterned growth and contact transfer of well-aligned carbon nanotubes films,” J. Phys. Chem. B, Vol. 103(21), pp. 4223-4227, 1999.
    [13]. Journet, C. and Bernier, P., “Production of carbon nanotubes,” Appl. Phys. A-Mater. Sci. Process., Vol. 67(1), pp. 1-9, 1998.
    [14]. Katoh, R., Tasaka, Y., Sekreta, E., Yumura, M., Ikazaki, F., Kakudate, Y., and Fujiware, S., “Sonochemical production of a carbon nanotube,” Ultrason. Snochem., Vol. 6(4), pp. 185-187, 1999.
    [15]. Howard, J. B., Daschowdhury, K., and Vandersande, J. B., “Carbon shells in flames,” Nature, Vol. 370(6491), pp. 603, 1994.
    [16]. Merchan-Merchan, W., Saveliev, A. V., Kennedy, L. And Jimenez, W. C., “Combustion synthesis of carbon nanotubes and related nanostructures,” Prog. Energy Combust. Sci., Vol. 36, pp. 696-727, 2010.
    [17]. Goel, A., Hebgen, P., Vander Sande, J. B., and Howard, J. B., “Combustion synthesis of fullerenes and fullerenic nanostructures,” Carbon, Vol. 40(2), pp. 177-182, 2002.
    [18]. DasChowdhury, K., Howard, J. B., and VanderSande, J. B., “Fullerenic nanostructures in flames,” J. Mater. Res., Vol. 11(2), pp. 341-347, 1996.
    [19]. Height, M. J., Howard, J. B., and Tester, J. W., “Flame synthesis of single-walled carbon nanotubes,” Proc. Combust. Inst., Vol. 30, pp. 2537-2543, 2005.
    [20]. Height, M. J., Howard, J. B., Tester, J. W., and Sande, J. B. V., “Flame synthesis of single-walled carbon nanotubes,” Carbon, Vol. 42(11), pp. 2295-2307, 2004.
    [21]. Wen, J. Z., Richter, H., Green, W. H., Howard, J. B., Treska, M., Jardim, P. M., and Sande, J. B. V., “Experimental study of catalyst nanoparticle and single walled carbon nanotube formation in a controlled premixed combustion,” J. Mater. Chem., Vol. 18(13), pp. 1561-1569, 2008.
    [22]. Diener, M. D., Nichelson, N., and Alford, J. M., “Synthesis of single-walled carbon nanotubes in flames,” J. Phys. Chem. B, Vol. 104(41), pp. 9615-9620, 2000.
    [23]. Vander Wal, R. L., and Ticich, T. M., “Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers,” J. Phys. Chem. B, Vol. 105(42), pp. 10249-10256, 2001.
    [24]. Vander Wal, R. L., and Ticich, T. M., “Comparative flame and furnace synthesis of single-walled carbon nanotubes,” Chem, Phys. Lett., Vol. 336(1-2), pp. 24-32, 2001.
    [25]. Vander Wal, R. L., “Fe-catalyzed single-walled carbon nanotube synthesis within a flame environment,” Combust. Flame, Vol. 130(1-2), pp. 37-47, 2002.
    [26]. Vander Wal, R. L., and Hall, L. J., “Ferrocene as a precursor reagent for metal-catalyzed carbon nanotubes: competing effects,” Combust. Flame, Vol. 130(1-2), pp. 27-36, 2002.
    [27]. Vander Wal, R. L., “Flame synthesis of ni-catalyzed nanofibers,” Carbon, Vol. 40(12), pp. 2101-2107, 2002.
    [28]. Vander Wal, R. L., Berger, G. M., and Hall, L. J., “Single-walled carbon nanotube synthesis via a multi-stage flame configuration,” J. Phys. Chem. B, Vol. 106(14), pp. 3564-3567, 2002.
    [29]. Vander Wal, R. L., Berger, G. M., and Hall, L. J., “Optimization of flame synthesis for carbon nanotubes using supported catalyst,” J. Phys. Chem. B, Vol. 106(51), pp. 13122-13132, 2002.
    [30]. Vander Wal, R. L., Berger, G. M., and Hall, L. J., “The chemistry of premixed flame synthesis of carbon nanotubes using supported catalyst,” Proc. Combut. Inst., Vol. 29, pp. 1079-1085, 2002.
    [31]. Nakazawa, S., Yokomori, T., and Mizomoto, M., “Flame synthesis of catbon nanotubes in a wall stagnation flow,” Chem. Phys. Lett., Vol. 403(1-3), pp. 158-162, 2005.
    [32]. Merchan-Merchan, W., Saveliev, A. V., Kennedy, L. A., and Fridman, A., “Formation of carbon nanotubes in counter-flow, oxy-methane diffusion flames without catalysts,” Chem. Phys. Lett., Vol. 354(1-2), pp. 20-24, 2002.
    [33]. Saveliev, A. V., Merchan-Merchan, W., and Kennedy, L. A., “Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame,” Combust. Flame, Vol. 135(1-2), pp. 27-33, 2003.
    [34]. Merchan-Merchan, W., Saveliev, A. V., and Kennedy, L. A., “High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control,” Carbon, Vol. 42(3), pp. 599-608, 2004.
    [35]. Silvestrini, M., Merchan-Merchan, W., Richter, H., Saveliev, A., and Kennedy, L. A., “Fullerene formation in atmospheric pressure opposed flow oxy-flames,” Proc. Combust. Inst., Vol. 30, pp. 2545-2552, 2005.
    [36]. Hou, S. S., Chung, D. H., and Lin, T. H., “Flame synthesis of carbon nanotubes in a rotating counterflow,” Journal of Nanoscience and Nanotechnology, Vol. 9(8), pp. 4826-4833, 2009.
    [37]. Hou, S. S., Chung, D. H., and Lin, T. H., “High-yield synthesis of carbon nano-onions in counterflow diffusion flames,” Carbon, Vol. 47(4), pp. 938-947, 2009.
    [38]. Yuan, L. M., Li, T. X., and Saito, K., “Growth mechanism of carbon nanotubes in methane diffusion flames,” Carbon, Vol. 41(10), pp. 1889-1896, 2003.
    [39]. Yuan, L. M., Saito, K., Pan, C. X., Williams, F. A., and Gordon, A. S., “Nanotubes from methane flames,” Chem. Phys. Lett., Vol. 340(3-4), pp. 237-241, 2001.
    [40]. Yuan, L. M., Saito, K., Hu, W. C., and Chen, Z., “Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes,” Chem. Phys. Lett., Vol. 346(1-2), pp. 23-28, 2001.
    [41]. Arana, C. P., Puri, I. L., and Sen, S., “Catalyst influence on the flame synthesis of aligned carbon nanotubes and nanofibers,” Proc. Combust. Inst., Vol. 30, pp. 2553-2560, 2005.
    [42]. Vander Wal, R. L., “Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes,” Chem. Phys. Lett., Vol. 324(1-3), pp. 217-223, 2000.
    [43]. Vander Wal, R. L., Ticich, T. M., and Curtis, V. E., “Diffusion flame synthesis of single-walled carbon nanotubes,” Chem. Phys. Lett., Vol. 323(3-4), pp. 217-223, 2000.
    [44]. Liu, T. C., and Li, Y. Y., “Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method,” Carbon, Vol. 44(10), pp. 2045-2050, 2006.
    [45]. Lee, G. W., Jurng, J., and Hwang, J., “Formation of Ni-catalyzed multiwalled carbon nanotubes and nanofibers on a substrate using an ethylene inverse diffusion flame,” Combust. Flame, Vol. 139(1-2), pp. 167-175, 2004.
    [46]. Lee, G. W., Jurng, J., and Hwang, J., “Synthesis of carbon nanotubes on a catalytic metal substrate by using an ethylene inverse diffusion flame,” Carbon, Vol. 42(3), pp. 682-685, 2004.
    [47]. Xu, F. S., Liu, X. F., and Tse, S. D., “Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flame,” Carbon, Vol. 44(3), pp. 570-577, 2006.
    [48]. Chao, Y. C., Jeng, M. S., and Han, J. M., “Visualization and image processing of an acoustically excited jet flow,” Exp. Fluids, Vol. 12(1-2), pp. 29-40, 1991.
    [49]. Chao, Y. C., and Jeng, M. S., “Behavior of the lifted jet flame under acoustic excitation,” Proc. Combust. Inst., Vol. 24, pp. 333-340, 1992.
    [50]. Chao, Y. C., Yuan, T., and Jong, Y. C., “Measurements of the stabilization zone of a lifted jet flame under acoustic excitation,” Exp. Fluids, Vol. 17(6), pp. 381-389, 1994.
    [51]. Chao, Y. C., Yuan, T., and Tseng, C. S., “Effects of flame lifting and acoustic excitation on the reduction of NOx emissions,” Combust. Sci. Technol., Vol. 113(1), pp. 49-65, 1996.
    [52]. Chao, Y. C., Jong, Y. C., and Sheu, H. W., “Helical-mode excitation of lifted flames using piezoelectric actuators,” Exp. Fluids, Vol. 28(1), pp. 11-20, 2000.
    [53]. Chung, D. H., and Lin, T. H., “Nitrogen dilution effect on flame synthesis of carbon nanostructures with acoustic modulation.” Journal of Physical Chemistry C, Vol. 115(33), pp. 16287-16294, 2011.
    [54]. Pan, C., Xu, X., “Synthesis of carbon nanotubes from ethanol flame,” J. Mater. Sci. Lett. Vol. 21, pp. 1207-1209, 2002.
    [55]. Pan, C., Bao, Q., “Well-Aligned carbon nanotubes from ethanol flame,” J. Mater. Sci. Lett. Vol. 21, pp. 1927-1929, 2002.
    [56]. Liu, Y., Pan, C., Wang, J., “Raman Spectra of Carbon Nanotubes and Nanofibers Prepared by Ethanol Flames,” J. Mater. Sci. Lett. Vol. 39, pp. 1091-1094, 2004.
    [57]. Pan, C., Liu, Y., Cao, F., “Novel solid-cored carbon nanofiber grown on steels substrates in ethanol flames,” J. Mater. Sci. Lett. Vol. 40, pp. 1293-1295, 2005.
    [58]. Liao, L., Fang, P., Pan, C., “Nitrogen-Doped Carbon Nanotubes from Amine Flames,” Journal of Nanoscience and Nanotechnology, Vol. 11, pp. 1060-1067, 2011.
    [59]. Cao, B., Zhang, B., Jiang, X., Zhang, Y., Pan, C., “Direct synthesis of high concentration N-doped coiled carbon nanofibers from amine flames and its electrochemical properties,” Journal of Power Sources, Vol.. 196, pp. 7868-7873, 2011.
    [60]. Hata, K., Futaba, D. N., Mizuno, K., Namai, T., Yumura, M., and Iijima, S., “Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes,” Science, Vol. 306, pp. 1362-1364.
    [61]. Futaba, D. N., Yamada, T., Mizuno, K., Yumura, M., and Iijima, S., “Kinetics of Water-Assited Single-Walled Carbon Nanotube Synthesis Revealed by a Time-Evolution Analysis,” Phys. Rec. Lett., Prl. 95, 056104, 2005.
    [62]. Baker, R. T. K., “Catalytic growth of carbon filaments,” Carbon, Vol. 27, pp. 315-323, 1989.
    [63]. Hu, W. C., Lin, T. H., “Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments,” Nanotechnology, Vol. 27, No. 10, 165602, 2016.

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE