| 研究生: |
葉品均 Yeh, Pin-Chun |
|---|---|
| 論文名稱: |
具二維力覺感測之撓性夾爪設計 Design of a Compliant Gripper with Two-Dimensional Force Sensing on Each Finger |
| 指導教授: |
藍兆杰
Lan, Chao-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 撓性夾爪 、二維力覺感測 、串聯彈性致動器 、平面線性彈簧 、靜力學模型 、環境接觸偵測 、光學編碼器 |
| 外文關鍵詞: | Compliant gripper, two-dimensional force sensing, series elastic actuator, planar spring, static model |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前精密組裝產業仍然需耗費大量人力來進行,為了解決人力不足的問題並提高製造生產率,逐步採用機器人夾爪自動化是理想的解決方案,使用自動化可消除人為因素、減少勞動力成本及學習曲線、減少節拍時間並增加可靠性,而具有接近人手的功能及更廣泛的應用。本文以自動化產業的物件取放為研究重點,特別是對力覺敏感的產業應用,例如:電子零件的插件扣合、機械零件的緊配組裝及脆弱物件的取放,達到夾爪手指的獨立多方向力覺感知,且不影響手指操作時的方便性。
本文將力覺感測器安置於傳動機構,利用光學編碼器配合靜力學模型估測當前接觸力,各指具有獨立多維的力覺感測能力,除了夾取物體所需之夾持力及插入力,還能感測夾爪與環境發生干涉之碰撞力並做出反應,保護夾爪於移動期間不損壞,夾取物件期間具有量測物件撓性的功能。本文夾爪使用步進馬達驅動以滾珠螺桿及皮帶輪組成之減速機構,為達到準確的夾持力及插入力的控制及感測,其中串聯彈性致動器的使用,運用撓性元件串接馬達與負載,可大幅降低馬達及減速機構之慣性與摩擦對機器末端輸出的影響,因此相較於剛性致動器可達成更精準的控制輸出力量,而平面線性彈簧的設計也將對夾爪性能表現及可靠度有所影響。
本文共設計了三組原型機,並探討不同設計在實務方面的影響並改善,使用靜力學及運動學分別計算其靜力學模型,以利不同接觸力的計算並輔以工程模擬軟體驗證靜力學模型的準確性。此外,靜力學模型也用於預測夾爪性能,例如:最大夾持力及插入力、力量量測解析度、奇異點位置以及機械利益計算等,並以此為基礎設計下一型原型機,並針對原型第三型推導重力模型,確認重力對機構表現影響程度。
本夾爪力覺感測應用情境共分為六種,依序為控制並量測夾持力、控制夾持力同時感測夾持力及插入力、量測x方向環境碰撞力、量測z方向環境碰撞力、物件撓性量測及因應環境變化之逆向驅動功能,針對以上應用情境進行原型機實驗前,本文先行調整機構,改善零件設計減少加工誤差對力量量測影響,校正參數後著手位置及夾持力重複度實驗。最後為上述六種應用情境實驗,尋找及分析其誤差來源,提供未來原型機設計參考。
Various sensorized grippers aim to safely handle delicate objects and prevent environmental collisions by integrating sensors on finger surfaces for direct force measurements. However, this often leads to complex sensor placement and wire routing due to the requirement for multiple sensors on a single finger. Additionally, finger-based sensors are limited in their ability to sense external gripping force, making it challenging to adapt to objects with specific geometries. To address these challenges, our research proposes a compliant two-fingered gripper that relies on deformation sensing in the drivetrain's elastic elements to measure finger force. This approach uses a minimal number of optical encoders in the drivetrain, enabling two-dimensional and independent force sensing at any location on each finger, simplifying electronic complexity and offering flexibility in adapting to various object shapes.
A static model calculates contact forces and predicts singularity, maximum gripping and support forces, force resolution, and mechanical advantage. Experimental verifications and gripping examples showcase the proposed gripper's merits, with high force and position repeatability. Tested in scenarios such as two-dimensional force sensing, object compliance measurement, and backdrivability, this compliant gripper presents a competitive solution for force-sensitive environments and manipulating objects. Expectations are high for its force-sensing potential to enhance robot manipulations in diverse applications, making it a valuable tool in the field of robotics.
[1] Fantoni, Gualtiero, et al. "Grasping devices and methods in automated production processes." CIRP Annals 63.2 (2014): 679-701.
[2] Sasaki, Koichi, et al. "Robotic grasping using proximity sensors for detecting both target object and support surface." 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.
[3] Huang, Yan-Lin, et al. "Torque-Sensorless Control of Stepper Motors for Low-Cost Compliant Motion Generation." IEEE Access 9 (2021): 94495-94504.
[4] Liu, Hong, et al. "Multisensory five-finger dexterous hand: The DLR/HIT Hand II." 2008 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 2008.
[5] Liu, Chih-Hsing, et al. "Optimal design of a soft robotic gripper for grasping unknown objects." Soft robotics 5.4 (2018): 452-465.
[6] Shao, Guangbin, et al. "3D printed magnetically-actuating micro-gripper operates in air and water." Additive Manufacturing 38 (2021): 101834.
[7] Barrett Corp. "Multi-fingered programmable grasper" https://advanced.barrett.com/barretthand [Accessed: October 24,2023]
[8] Gandarias, Juan M., et al. "Underactuated gripper with forearm roll estimation for human limbs manipulation in rescue robotics." 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019.
[9] Oriental motor Corp. "Electric Gripper EH Series" https://www.orientalmotor.com/products/pdfs/2018-2019/F/EH-Series-Electric-Gripper.pdf. [Accessed: October 24,2023]
[10] Ohara, Kenichi, Ryosuke Iwazawa, and Makoto Kaneko. "Modeling and Analysis of a High-Speed Adjustable Grasping Robot Controlled by a Pneumatic Actuator." Robotics 11.1 (2022): 27.
[11] Jain, Ravi K., et al. "Design and manufacturing of mobile micro manipulation system with a compliant piezoelectric actuator based micro gripper." Journal of Manufacturing Systems 35 (2015): 76-91.
[12] Zhong, Z. W., and C. K. Yeong. "Development of a gripper using SMA wire." Sensors and Actuators A: Physical 126.2 (2006): 375-381.
[13] Monkman, G. J., Hesse, S., Steinmann, R., & Schunk, H. (2007). Robot grippers. John Wiley & Sons.
[14] Lee, Chun-Tse, and Jen-Yuan Chang. "Design of Hybrid Fully Actuated and Self-Adaptive Mechanism for Anthropomorphic Robotic Finger." Journal of Mechanisms and Robotics 15.4 (2022): 041004.
[15] FESTO Corp. "Multi Choice Gripper" https://www.festo.com/net/SupportPortal/Files/333986/
Festo_MultiChoiceGripper_en.pdf [Accessed: October 24,2023]
[16] Brown, Eric, et al. "Universal robotic gripper based on the jamming of granular material." Proceedings of the National Academy of Sciences 107.44 (2010): 18809-18814.
[17] She, Yu, et al. "Cable manipulation with a tactile-reactive gripper." The International Journal of Robotics Research 40.12-14 (2021): 1385-1401.
[18] Hogreve, Sebastian, and Kirsten Tracht. "Design and implementation of multiaxial force sensing gripper fingers." Production Engineering 8.6 (2014): 765-772.
[19] SCHUNK Corp. "FT-AXIA" https://schunk.com/no/en/automation-technology/force/torque-sensors/ft-axia/c/PGR_3907 [Accessed: October 24,2023]
[20] Xu, Wenfu, et al. "A compliant adaptive gripper and its intrinsic force sensing method." IEEE Transactions on Robotics 37.5 (2021): 1584-1603.
[21] Simone, Filomena, Gianluca Rizzello, and Stefan Seelecke. "Metal muscles and nerves—a self-sensing SMA-actuated hand concept." Smart Materials and Structures 26.9 (2017): 095007.
[22] Hao, Guangbo, John Mullins, and Kevin Cronin. "Simplified modelling and development of a bi-directionally adjustable constant-force compliant gripper." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231.11 (2017): 2110-2123.
[23] Pratt, Gill A., and Matthew M. Williamson. "Series elastic actuators." Intelligent Robots and Systems 95.'Human Robot Interaction and Cooperative Robots', Proceedings. 1995 IEEE/RSJ International Conference on. Vol. 1. IEEE, 1995.
[24] Yu, Ying-Lung, and Chao-Chieh Lan. "Design of a Miniature Series Elastic Actuator for Bilateral Teleoperations Requiring Accurate Torque Sensing and Control." IEEE Robotics and Automation Letters 4.2 (2019): 500-507.
[25] Lin, Kuei-You, Kuan-Yi Wu, and Chao-Chieh Lan. "High-performance series elastic stepper motors for interaction force control." 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2017.
[26] HIWIN Corp. 「整合型電動夾爪 」https://www.hiwin.tw/download/tech_doc/ee/
Integrated_Electric_Gripper-(C).pdf [Accessed: October 24,2023]
[27] Oriental motor Corp. 「電動模組產品」 https://www.orientalmotor.com.tw/products/limo/eh_f/ [Accessed: October 24,2023]
[28] OnRobot® RG2 https://onrobot.com/en/products/rg2-gripper [Accessed: October 24,2023]
[29] Robotiq® 2F-85 https://robotiq.com/products/2f85-140-adaptive-robot-gripper [Accessed: October 24,2023]
[30] Guo, Menglong, et al. "Blue gripper: a robust, low-cost, and force-controlled robot hand." 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). IEEE, 2019.
[31] I-PEX Corp. "ES-Gripper" www.corp.i-pex.com/sites/default/files/2020-08/
ES-Gripper_Catalog.pdf [Accessed: October 24,2023]
[32] I-PEX Corp. "ESTORQ" www.corp.i-pex.com/sites/default/files/2020-08/
ESTORQ_Standard_Type_Catalog.pdf [Accessed: October 24,2023]
[33] EPSON Corp. " Epson Robot " https://w3.epson.com.tw/uploadfiles/brochure/力覺感測器.pdf [Accessed: October 24,2023]
[34] OnRobot Corp. "RG2-FT" https://onrobot.com/en/products/rg2-ft-gripper [Accessed: October 24,2023]
[35] Tameson Corp. "Pneumatic Gripper - How They Work" https://tameson.com/pneumatic-gripper.html [Accessed: October 24,2023]
[36] Oriental motor Corp. "PKP214D06A-R2EL" https://www.orientalmotor.com.tw/products/st/list/detail/?product_name=PKP214D06A&brand_tbl_code=ST&series_code=GCG0&gad_source=1&gclid=Cj0KCQjwtJKqBhCaARIsAN_yS_kOS-Qtm-yaOi-QgK7d08kioAhyFOD_12xQw_cYyXAEeWpbyPtv5PwaAnZKEALw_wcB" [Accessed: October 24,2023]
[37] Lan, C. C., & Lee, K. M. (2006). Generalized shooting method for analyzing compliant mechanisms with curved members.
[38] DAIDO STEEL Corp. "Plastic Mold Steel" https://www.daido.co.jp/en/products/tool/pla/index.html#j04 [Accessed: October 24,2023]
[39] 賴于暄,中華民國一一O年。「開發力量控制觸覺回饋裝置於大範圍之三維虛擬阻抗實現」,成功大學機械工程學系碩士學位論文。
[40] 梁家皓,中華民國一一O年。「線性串聯彈性致動器之模組化研究」,成功大學機械工程學系碩士學位論文。
校內:2028-12-18公開