簡易檢索 / 詳目顯示

研究生: 白世中
Pai, Shih-Chung
論文名稱: 證明磷脂醯絲胺酸受體基因能經由調控氧活性分子信號及細胞自噬作用來調節斑馬魚腦部發育
Identification of phosphatidylserine receptor (PSR) gene can regulate zebrafish brain development through controlling on ROS stress and autophagy induction
指導教授: 洪健睿
Hong, Jiann-Ruey
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 73
中文關鍵詞: 磷脂醯絲胺酸受體斑馬魚胚胎發育次世代定序腦部發育
外文關鍵詞: PSR, zebrafish, embryonic, development, NGS, brain development
相關次數: 點閱:120下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 斑馬魚是一個研究基因發育及藥物測試的模式生物,基因與人類的相似度有87%,其快速的發育得以壓低成本和進行大量實驗,而且胚胎為體外發育而且透明易觀察,因此現今研究許多研究基因功能的科學家以斑馬魚作為實驗動物。細胞凋亡是一種計畫性死亡,能夠清除不必要或不正常且無法恢復的細胞,細胞凋亡後會產生凋亡小體由磷脂醯絲胺酸受體(PSR)清除。磷脂醯絲胺酸受體是一種位於巨噬細胞上用於辨認凋亡細胞上的磷脂醯絲胺酸來進行吞噬的受體。先前研究發現磷脂醯絲胺酸受體缺陷的斑馬魚之胚胎早期發育出現凋亡細胞堆積在體節的情形,並且發現到磷脂醯絲胺酸受體剃除斑馬魚發受精後 8 小時胚胎發育遲緩而且氧活性分子濃度提升,並在 24 小時腦部、眼睛、心臟及體節發育不正常的情形。本實驗以 CRISPR/Cas9 系統建立磷脂醯絲胺酸受體剃除的 F0 及F1 斑馬魚來研究細胞自噬作用及中腦後腦發育影響。接著利用次世代定序來觀察基因的變化,分析數據後挑出氧活性分子相關基因、細胞自噬基因以及中後腦發育基因,以 qRT-PCR 做表現量確認與次世代定序結果一致。西方點墨法中細胞自噬活動明顯降低,像 ATG5-12 及 Beclin-1 表現相對對照組降低。透過顯微注射補足 PSR mRNA, ROS 的應激反應和自噬相關基因下調被阻斷,腦部發育相對正常。綜合結果發現磷脂醯絲胺酸受體能夠藉由調控凋亡小體來克服氧化
    壓力,進而能讓細胞自噬系統正常運作使中腦以及後腦能正常發育。

    Zebrafish model system is important in genetic and developmental study, with fully established online gene library available for gene function study, short development period and transparent embryo make researchers fully access to all development stage with very low cost, this make zebrafish a power model in gene study. Phosphatidylserine receptor (PSR) locate on macrophage can identify apoptotic cell s which present phosphatidylserine that originally locate on inner membrane on cell surface. Previous studies show that mouse without PSR have defect in brain, eye and heart development, PSR knock down in zebrafish embryo have identical result. In our previous study, PSR knock out zebrafish line was established by CRISPR/Cas9 system targeting in PSR gene on exon 3.Increased reactive oxygen species was detected in PSR knockout zebrafish embryo during gastrulation stage, swelling heart and smaller brain at 24 hour post fertilization (hpf). In this study, we investigate the gene profile in PSR knockout zebrafish embryo by CRISPR/Cas9 approach. Then we use the NGS analysis at 8 hpf for further evaluation. We found that mid-brain and hindbrain defected embryos have induced ROS-mediated stress signal and stress-related genes . Then, the novel genes downregulation of autophagy-related genes such as Beclin-1, ATG5 and ATG8. Finally, the brain-defect embryos was rescued by extra mRNA of PSR by microinjection that ROS-mediated stress response and downregulation of autophagy-related genes is blocked. Our results provide new insights in PSR-mediated engulfing signal for brain development.

    中文摘要…………………………………………………………………………… I 英文摘要…………………………………………………………………………... II 誌謝……………………………………………………………………………..... VI 目錄……………………………………………………………………………… VII 表目錄…………………………………………………………………… X 圖目錄……………………………………………………………………….. XI 縮寫表…………………………………………………………………… XIII 一、研究背景……………………………………………………………................. 1 1-1、氧活性分子……………………………………………………………… 1 1-2、細胞自噬………………………………………………………………… 2 1-3、磷脂醯絲胺酸受體……………………………………………………… 3 1-4、斑馬魚模式生物………………………………………………………… 7 1-5、研究目的………………………………………………………………… 9 二、材料與方法…………………………………………………………………... 10 2-1、斑馬魚飼養………………………………………………………….. 10 2-2、豐年蝦孵化……………………………………………………………. 10 2-3、斑馬魚產卵…………………………………………………….….. 10 2-4、斑馬魚蛋白質萃取………………………………………………….. 11 2-5、蛋白質電泳………………………………………………………….. 11 2-6、蛋白質轉印………………………………………………………….. 12 2-7、西方點墨法………………………………………………………….. 12 2-8、斑馬魚胚胎 RNA 抽取…………………………………………….. 13 2-9、反轉錄及定量即時聚合酶酵素連鎖反應………………………….. 14 2-10、次世代定序……..…………………………………………………….. 14 2-11、斑馬魚胚胎頭部切片準備………..………………………………….. 15 三、結果……………..…………………………………………………………. 16 3-1、次世代定序發現磷脂醯絲胺酸剔除造成大量基因表現改變……. 16 3-2、磷脂醯絲胺酸受體剔除造成的氧化壓力中的抗氧化反應………... 19 3-3、磷脂醯絲胺酸受體剔除造成細胞自噬降低………………………….. 20 3-4、磷脂醯絲胺酸受體剔除後中後腦基因表現降低及腦部發育不全….. 21 四、討論……………..…………………………………………………………. 23 4-1、次世代定序資料中基因的改變……………………………………… 23 4-2、磷脂醯絲胺酸受體影響氧活性分子的平衡………………………… 24 4-3、磷脂醯絲胺酸受體調控細胞自噬活動……………………………… 25 4-4、磷脂醯絲胺酸受體調控腦部發育…………………………………… 25 4-5、磷脂醯絲胺酸受體基因未來應用…………………………………….. 26 參考文獻………………………………………………………………………. 28 圖表…………………………………………………………………………… 37

    白植友,斑馬魚磷脂醯絲胺酸受器啟動子之選殖與功能分析,國立成功大學生物科技研究所碩士論文,2007。

    唐婉倫,利用 CRISPR/Cas9 系統建立斑馬魚磷脂醯絲胺酸受體及 Bad 基因剔除魚隻及其胚胎發育功能分析,國立成功大學生物科技研究所碩士論文,2017。

    黃培軒,探討斑馬魚之磷脂醯絲胺酸受器其吞噬死亡細胞能力與否對早期胚胎發育之影響,國立成功大學生物科技研究所碩士論文,2015。

    黃冠榮,斑馬魚磷脂醯絲胺酸受器於骨骼發育過程中的影響,國立成功大學生物科技研究所碩士論文,2009。

    薛采晴,傳染性脾臟及腎臟壞死病毒(ISKNV)誘導魚類細胞株自噬作用之研究,國立成功大學生物科技研究所碩士論文,2017。

    Alfadda, A.A., and Sallam, R. Reactive oxygen species in health and disease. Journal of Biomedicine and Biotechnology 2012, 936486, 2012.

    Apel, K., and Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373-399, 2004.

    Balciunas, and D., Ronne, H. Evidence of domain swapping within the jumonji family of transcription factors. Trends in Biochemical Sciences 25, 274-276, 2000.

    Bannister, J.V., Bannister, W.H., and Rotilio, G. Aspects of the structure, function, and applications of superoxide dismutase. Chemical Rubber Company Critical Reviews in Biochemistry 22, 111-180, 1987.

    Bjorkoy, G., Lamark, T., Pankiv, S., Overvatn, A., Brech, A., and Johansen, T. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymology 452, 181-197, 2009.

    Boeckel, J.N., Guarani, V., Koyanagi, M., Roexe, T., Lengeling, A., Schermuly, R.T., Gellert, P., Braun, T., Zeiher, A., and Dimmeler, S. Jumonji domain-containing protein 6 (Jmjd6) is required for angiogenic sprouting and regulates splicing of VEGF-receptor 1. Proceedings of the National Academy of Sciences of the United States of America 108, 3276-3287, 2011.

    Böse, J., Gruber, A.D., Helming, L., Schiebe, S., Wegener, I., Hafner, M., Beales, M., Kontgen, F., and Lengeling, A. The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal. Journal of Biology 3, 15, 2004.

    Bottger, A., Islam, M.S., Chowdhury, R., Schofield, C.J., and Wolf, A. The oxygenase Jmjd6-a case study in conflicting assignments. Biochemical Journal 468, 191-202, 2015.

    Brocal, I., White, R.J., Dooley, C.M., Carruthers, S.N., Clark, R., Hall, A., Busch-Nentwich, E.M., Stemple, D.L., and Kettleborough, R.N.W. Efficient identification of CRISPR/Cas9-induced insertions/deletions by direct germline screening in zebrafish. BioMed Central Genomics 17, 259, 2016.

    Chang, B.S., Chen, Y., Zhao, Y.M., and Bruick, R.K. JMJD6 is a histone arginine demethylase. Science 318, 444-447, 2007.

    Cikala, M., Alexandrova, O., David, C.N., Pröschel, M., Stiening, B., Cramer, P., and Böttger, A. The phosphatidylserine receptor from Hydra is a nuclear protein with potential Fe (II) dependent oxygenase activity. BioMed Central Molecular and Cell Biology 5, 26, 2004.

    Clissold, P.M., and Ponting, C.P. JmjC: cupin metalloenzyme-like domains in jumonji, hairless and phospholipase A2β. Trends in Biochemical Sciences 26, 7-9, 2001.

    Covarrubias, L., Hernández-García, D., Schnabel, D., Salas-Vidal, E., and Castro-Obregón, S. Function of reactive oxygen species during animal development: passive or active? Developmental Biology 320, 1-11 , 2008.

    Cui, P., Qin, B., Liu, N., Pan, G., and Pei, D. Nuclear localization of the phosphatidylserine receptor protein via multiple nuclear localization signals. Experimental Cell Research 293, 154-163, 2004.

    Cumming, G. Replication and p intervals: p values predict the future only vaguely, but confidence intervals do much better. Perspectives on Psychological Science 3, 286-300, 2008.

    De Duve, C., and Wattiaux, R. Functions of lysosomes. Annual Review of Physiology 28, 435-492, 1966.

    Dennery, P.A. Effects of oxidative stress on embryonic development. Birth Defects Research Part C: Embryo Today 81, 155-162, 2007.

    Duvall, E., Wyllie, A.H., and Morris, R.G. Macrophage recognition of cells undergoing programmed cell death (apoptosis). Immunology 56, 351-358, 1985.

    Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L., and Henson, P.M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. The Journal of Immunology 248, 2207-2216, 1992.

    Fadok, V.A., Bratton, D.L., Konowal, A., Freed, P.W., Westcott, J.Y., and Henson P.M. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. Journal of Clinical Investigation 101, 890-898, 1998.

    Fadok, V.A., Bratton, D.L., Rose, D.M., Pearson, A., Ezekewitz, R.A., and Henson, P.M. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85-90, 2000.

    Fadok, V.A., Laszlo, D.J., Noble, P.W., Weinstein, L., Riches, D.W., and Henson, P.M. Particle digestibility is required for induction of the phosphatidylserine recognition mechanism used by murine macrophages to phagocytose apoptotic cells. The Journal of Immunology 151, 4274-4285, 1993.

    Filomeni, G., De Zio, D., and Cecconi, F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death and Differentiation 22, 377-388, 2015.

    Garcia, D., and Shaw, R.J. AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Molecular Cell 66, 789-800, 2017.

    Gerhard, G.S., and Cheng, K.C. A call to fins! Zebrafish as a gerontological model. Aging Cell 1, 104-111, 2002.

    Glick, D., Barth, S., and Macleod, K.F. Autophagy: cellular and molecular mechanisms.
    The Journal of Pathology 221, 3-12, 2010.

    Gorjao, R., Takahashi, H.K., Pan, J.A., and Massao Hirabara, S. Molecular mechanisms involved in inflammation and insulin resistance in chronic diseases and possible interventions. Journal of Biomedicine and Biotechnology 2012, 841983, 2012.

    Hahn, P., Boese, J., Edler, S., and Lengeling, A. Genomic structure and expression of Jmjd6 and evolutionary analysis in the context of related JmjC domain containing proteins. BioMed Central Genomics 9, 293, 2008.

    Hahn, P., Wegener, I., Burrells, A., Böse, J., Wolf, A., Erck, C., Butler, D., Schofield, C.J., Bottger, A., and Lengeling, A. Analysis of Jmjd6 Cellular Localization and Testing for Its Involvement in Histone Demethylation. PLoS One 5, 13769, 2010.

    Hirth, F., Hartmann, B., and Reichert, H. Homeotic gene action in embryonic brain development of Drosophila. Development 125, 1579-1589, 1998.

    Ho, R.K. Cell movements and cell fate during zebrafish gastrulation. Development 116, 65-73, 1992.

    Hong, J.R., Lin, G.H., Li.n, C.J., Wang, W.P., Lee, C.C., Lin, T.L., and Wu, J.L. Phosphatidylserine receptor is required for the engulfment of dead apoptotic cells and for normal embryonic development in zebrafish. Development 131, 5417-5427, 2004.

    Hong, X., Zang, J., White, J., Wang, C., Pan, C.H., Zhao, R., Murphy, R.C., Dai, S., Henson, P., Kappler, J.W., Hagman, J., and Zhang, G. Interaction of JMJD6 with single-stranded RNA. Proceedings of the National Academy of Sciences of the United States of America 107, 14568-14572, 2010.

    Horvitz, H.R. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Research 59, 1701-1706, 1986.

    Hu, Z., Zhang, J., and Zhang, Q. Expression pattern and functions of autophagy-related gene atg5 in zebrafish organogenesis. Autophagy 7, 1514-1527, 2011.

    Huang, W.J., Zhang, X., Chen, W.W. Role of oxidative stress in Alzheimer's disease. Biomedical Reports 4, 519-522, 2016.

    Huynh, M.L., Fadok, V.A., and Henson, P.M. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. The Journal of Clinical Investigation 109, 41-50, 2002.

    Inoue, Y., Matsuda, T., Sugiyama, K., Izawa, S., and Kimura, A. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. Journal of Biological Chemistry 274, 270002-270009, 1999

    Kim, J.H., Choi, T.G., Park, S., Yun, H.R., Nguyen, N.Y., Jo, Y.H., Jang, M., Kim, J., Kang, I., Ha, J., Murphy, M.P., Tang, D.G., and Kim, S.S. Mitochondrial ROS-derived PTEN oxidation activates PI3K pathway for mTOR-induced myogenic autophagy. Cell Death and Differentiation 25, 1921-1937, 2018.

    Kim, Y.C., and Guan, K.L. mTOR: a pharmacologic target for autophagy regulation. Journal of Clinical Investigation 125, 25-32, 2015.

    Kimmel, C.B., Warga, R.M., and Schilling, T.F. Origin and organization of the zebrafish fate map. Development 108, 581-594, 1990.

    Koboldt, D.C., Steinberg, K.M., Larson, D.E., Wilson, R.K., and Mardis, E.R. The next-generation sequencing revolution and its impact on genomics. Cell 155, 27-38, 2013.

    Krieser, R.J., Moore, F.E., Dresnek, D., Pellock, B.J., Patel, R., Huang, A., Brachmann, C., and White, K. The Drosophila homolog of the putative phosphatidylserine receptor functions to inhibit apoptosis. Development 134, 2407-2414, 2007.

    Kunisaki, Y., Masuko, S., Noda, M., Inayoshi, A., Sanui, T., Harada, M., Sasazuki, T., and Fukui, Y. Defective fetal liver erythropoiesis and T lymphopoiesis in mice lacking the phosphatidylserine receptor. Blood 103, 3362-3364, 2004.

    Li, M.O., Sarkisian, M.R., Mehal, W.Z., Rakic, P., and Flavell, R.A. Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 302, 1560-1563, 2003.

    Lieschke, G.J.,and Currie, P.D. Animal models of human disease: zebrafish swim into view. Nature Reviews Genetics 8, 353-367, 2007.

    Lindsey, B.W., Douek, A.M., Loosli, F., and Kaslin, J. A whole brain staining, embedding, and clearing pipeline for adult zebrafish to visualize cell proliferation and morphology in 3-dimensions. Frontiers in Neuroscience 11, 750, 2018.

    Link, V., Shevchenko, A., and Heisenberg, C.P. Proteomics of early zebrafish embryos. BioMed Central Developmental Biology 6, 1-9, 2006.

    Liu, Y., Long, Y.H., Wang, S.Q., Zhang, Y.Y., Li, Y.F., Mi, J.S., Yu, C.H., Li, D.Y., Zhang, J.H., and Zhang, X.J. JMJD6 regulates histone H2A.X phosphorylation and promotes autophagy in triple-negative breast cancer cells via a novel tyrosine kinase activity. Oncogene 38, 980-997, 2019.

    Meyer, A., Biermann, C.H., and Ortí, G. The phylogenetic position of the zebrafish (Danio rerio), a model system in developmental biology: an invitation to the comparative method. Proceedings of the Royal Society B: Biological Science 252, 231-236, 1993.

    Mizushima, N. Autophagy: process and function. Genes and Development 21, 2861-2873, 2007.

    Moss, J.B., Price, A.L., Raz, E., Driever, W., and Rosenthal, N. Green fluorescent protein marks skeletal muscle in murine cell lines and zebrafish. Gene 173, 89-98, 1996

    Newman, M., Ebrahimie, E., and Lardelli, M. Using the zebrafish model for Alzheimer’s disease research. Frontiers in Genetics 5, 189, 2014.

    Nixon, R.A. Autophagy, amyloidogenesis and Alzheimer disease. Journal of Cell Science 120, 4081-4091, 2007.

    Oliver, V.F., van Bysterveldt, K., Markie, D., Crosier, P., Mackey, D.A., Hewitt, A.W., Willoughby, C.E., Sherwin, T., McGhee, C., and Vincent, A.L. Novel genes in familial recurrent corneal erosion dystrophy: identification with NGS and characterisation in a zebrafish model. Investigative Ophthalmology and Visual Science 56, 2528, 2015.

    Osumi, N., Shinohara, H., Numayama, K., and Maekawa, M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells 26, 1663-72, 2008.

    Parzych, K.R., and Klionsky, D. An overview of autophagy: morphology, mechanism, and regulation. Antioxidants and Redox Signaling 20, 460-473, 2014.

    Popa-Wagner, A., Mitran, S., Sivanesan, S., Chang, E., and Buga, A.M. ROS and brain diseases: the good, the bad, and the ugly. Oxidative Medicine and Cellular Longevity 2013, 963520, 2013.

    Ray, P.D., Huang, B.W., and Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling 24, 981-990, 2012.

    Sabaliauskas, N.A., Foutz, C.A., Mest, J.R., Budgeon, L.R., Sidor, A.T., Gershenson, J.A., Joshi, S.B., and Cheng, K. High-throughput zebrafish histology. Methods 39, 246-254, 2006.

    Schmidt, R., Strähle, U., and Scholpp, S. Neurogenesis in zebrafish-from embryo to adult. Neural Development 8, 1-13, 2013.

    Shen, C.Y., Quan, Q.L., Yang, C., Wen, Y.Q., and Li, H. Histone demethylase JMJD6 regulates cellular migration and proliferation in adipose-derived mesenchymal stem cells. Stem Cell Research and Therapy 9, 212, 2018.

    Shi, X., and Zhou, B. The role of Nrf2 and MAPK pathways in PFOS-induced oxidative stress in zebrafish embryos. Toxicol Science 115, 391-400, 2010.

    Silva, M.T. Secondary necrosis: the natural outcome of the complete apoptotic program. Federation of European Biochemical Societies 584, 4491-4499, 2010.

    Streisinger, G., Walker, C., Dower, N., Knauber, D., and Singer, F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293-296, 1981.

    Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., and Lander, E. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 102, 15545-15550, 2005.

    Tait, J.F., and Smith, C. Phosphatidylserine receptors: role of CD36 in binding of anionic phospholipid vesicles to monocytic cells. Journal of Biological Chemistry 274, 3048-3054, 1999.

    Takahashi, M., Higuchi, M., Matsuki, H., Yoshita, M., Ohsawa, T., Oie, M., and Fujii, M. Stress granules inhibit apoptosis by reducing reactive oxygen species production. Molecular and Cellular Biology 33, 815-829, 2013.

    Tanida, I., Ueno, T., and Kominami, E. LC3 and Autophagy. Methods in Molecular Biology 445, 77-88, 2008.

    Tipney, H., and Hunter, L. An introduction to effective use of enrichment analysis software. Human Genomics 4, 1-5, 2010.

    Tropepe, V., and Sive, H. Can zebrafish be used as a model to study the neurodevelopmental causes of autism? Genes Brain and Behavior 2, 268-281, 2003.

    Tsai, W.C., Reineke, L.C., Jain, A., Jung, S.Y., Lloyd, R.E. Histone arginine demethylase JMJD6 is linked to stress granule assembly through demethylation of the stress granule-nucleating protein G3BP1. Journal of Biological Chemistry 292, 18886-18896, 2017.

    Tsujimoto, Y., and Shimizu, S. Another way to die: autophagic programmed cell death. Cell Death Differentiation 12 , 1528-1534, 2005.

    Vogel, C., Silva, G.M., Marcotte, E.M. Protein expression regulation under oxidative stress. Molecular and Cellular Proteomics 10, 009217, 2011.

    Wang, X., Wu, Y.C., Fadok, V.A., Lee, M.C., Gengyo Ando, K., Cheng, L.C., Ledwich, D., Hsu, P.K., Chen, J.Y., and Chou, B. Cell corpse engulfment mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. Science 302, 1563-1566, 2003.

    Wang, L., Feng, Z., Wang, X., Wang, X., and Zhang, X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136-138, 2010.

    Webby, C.J., Wolf, A., Gromak, N., Dreger, M., Kramer, H., Kessler, B., Nielsen, M.L., Schmitz, C., Butler, D.S., Yates, J.R., Delahunty, C.M., Hahn, P., Lengeling, A., Mann, M., Proudfoot, N.J., Schofield, C.J., and Bottger, A. Jmjd6 Catalyses Lysyl-Hydroxylation of U2AF65, a Protein Associated with RNA Splicing. Science 325, 90-93, 2009.

    Wolf, A., Mantri, M., Heim, A., Muller, U., Fichter, E., Mackeen, M.M., Schermelleh, L., Dadie, G., Leonhardt, H., Venien-Bryan, C., Kessler, B.M., Schofield, C.J., and Bottger, A. The polyserine domain of the lysyl-5 hydroxylase Jmjd6 mediates subnuclear localization. Biochemical Journal 453, 357-370, 2013.

    Wolf, A., Schmitz, C., and Böttger, A. Changing story of the receptor for phosphatidylserine‐dependent clearance of apoptotic cells. European Molecular Biology Organization Reports 8, 465-469, 2007.

    Yang, Y., Bazhin, A.V., Werner, J., and Karakhanova, S. Reactive oxygen species in the immune system. International Reviews of Immunology 32, 249-270, 2013.

    Zakharova, L., Dadsetan, S., and Fomina, A.F. Endogenous Jmjd6 Gene Product is Expressed at the Cell Surface and Regulates Phagocytosis in Immature Monocyte-Like Activated THP-1 Cells. Journal of Cellular Physiology 221, 84-91, 2009.

    下載圖示 校內:2025-02-01公開
    校外:2025-02-02公開
    QR CODE