| 研究生: |
施湘農 Shih, Hsiang-Nung |
|---|---|
| 論文名稱: |
雷射微加工即時監測技術 On-line Monitoring of Laser Micromchining |
| 指導教授: |
崔祥辰
Chui, Hsiang-Chan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 雷射加工 、共焦結構 、即時監測 |
| 外文關鍵詞: | Laser micro-machining, confocal structure, On-line monitoring |
| 相關次數: | 點閱:86 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
精密雷射微加工在生物醫學、電子及材料加工等領域的科學研究和工業應用中扮演著重要的地位。它們依賴對加工深度的高精確控制,尤其是加工盲孔或差結構的雷射鑽孔。在本篇論文我們提出一種雷射微加工即時監測系統。為即時監測雷射加工深度系統,我們利用一共焦結構(confocal structure)和一光偵測器(photodetector),發展一測量微小孔洞深度的方法,此方法可達微米(μm)的精確度。經實驗証明此方法對一直徑約100微米、深度為數十微米的孔洞具有優於95%的深度準確度。並利用兩個透鏡組去證實,適當地選擇共焦結構的透鏡焦距可以有效地增加位置的敏靈度。此方法可以適用於不同結構的盲孔雷射鑽孔,例如單一材料或不同材料的多層結構,以及不同材料,例如合金和矽晶片,也非常容易和工業及研究導向的雷射加工流程整合。
The precision laser micro-machining plays an important role in the science research and industrial applications among the biomedical, electronics, and material processing fields. They rely on high precise control of the process depth, especially laser drilling for blind-hole or heterodyne structure. In this paper, we present a on-line monitoring of laser micromachining system. A micron-precision micro-hole depth detection scheme has been developed which utilizes a confocal structure and a photodetector. This scheme is experimentally confirmed to posses an accuracy of greater than 95% for micro-holes on the order of one-hundred microns in diameter. And utilize two lens groups to verify, chosen the lens focus of the confocal structure appropriately can increase the position effectively. This method can be suitable for different structure, such as single substructure or multilayer bulk heterodyne structure, and for difference material, alloy and silicon wafer, and could be easily be integrated for the control of industrial and research oriented laser micro-machining process.
[1] R. Petkovsek, I. Panjan, A. Babnik, J. Mozina, “Optodoynamic study of multiple pulses mrcro drilling”, Ultrasonics, 44, E1191 (2006).
[2] C. E. Yeack, R. L. Melcher, H. E. Klauser, “Transient photoacoustic monitoring of pulsed lase drilling”, Applied Physics Letters, 41, 1043 (1982).
[3] S. Strgar, J. Mozina, “An optodynamic determination of the depth of laser-drilled holes by the simultanceous detection of ultrasonic waves in the air and the workpiece”, Ultrasonics, 40, 791 (2002).
[4] M. Stafe, C. Negutu, I. M. Popescu, “Realtime determination and controlof the laser-drilled holes depth”, Shock Waves, 14, 123 (2005).
[5] R. Petkovsek, A. Babnik, J. Diaci, J. Mozina, “Optodynamic monitoring of laser micro-drilling of glass by using a laser probe”, Applied Physics A: Materials Science & Processing, 93, 141 (2008).
[6] N. Idris, S. N. Madjid, M. Ramli, K.H. Kurniawan, Y.I. Lee, K. Kagawa, “Monitoring of laser processing using induced current under applied electric field on laser produced-plasma”, Journal of Materials Processing Technology, 209, 3009 (2009).
[7] H. G. Rhee, D. I. Kim, Y. W. Lee, “Realization and performance evaluation of high speed autofocusing for dircet laser lithography”, Review of Scientific Instruments, 80, 073103 (2009).
[8] L. Lading, C. DamHansen, E. Rasmussen, “Suface light scattering: integrated technology and signal procedding”, Applied Optics, 36, 7593 (1997).
[9] D. Hofstetter, H. P. Zappe, R. Dandliker, “Optical displacement measurement with GaAs/AlGaAs-based monolithically integrated michelson interferometers”, Journal of Lightwave Technology, 15, 663 (1997).
[10] R. H. Webb, “Confocal optical microscopy”, Report on Progress in Physics, 59, 427 (1996).
[11] E. Arons, E. Leith, “Coherence confocal-imaging system for enhanced depth discrimination in transmitted light”, Applied Optics, 35, 2499 (1996).
[12] 丁勝懋,“雷射工程導論”,中央圖書出版社(1985)。
[13] 林三寶,“雷射原理與應用”,全華科技圖書股份有限公司(1998)。
[14] W. M. Steen, “Laser material processing”, Springer, New York (2001).
[15] 陳譽云,“摻釹離子全固態紅光雷射”,私立輔仁大學碩士論文(2007)。
[16] W. T. Silfvast, “Laser Fundamentals”, Cambrideg University Press (1996).
[17] 胡木浩,“雷射切割不鏽鋼之粗糙度預測模式探討”,國立屏東科技大學碩士論文(2003)。
[18] Agnesi, G. C. Reali, P. G. Gobbi, “430-mW single-transvere-mode diode-pumped Nd:YVO4 laser at 671 nm”, IEEE Journal Quantum Electron, 34, 1297 (1998).
[19] T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumebbyi, I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4”, Applied Physics B: Laser and Optics, 58, 373 (1994).
[20] Yuwen Zhang and A. Faghri, “Vaporization, melting and heat conduction in the laser drilling process”, International Journal of Heat and Mass Transfer, 42, 1775-1790 (1999).
[21] 張國順,“現在雷射製造技術”,新文京開發出版股份有限公司(2006)。
[22] R. Pini, R. Salimbeni, G. Toci, M. Vannini, “High-quality drilling with copper vapour lasers”, Optical and Quantum Electronics, 27, 1243 (1995).
[23] A. Salleo, T. Sands, F.Y. G´enin, “Machining of transparent materials using an IR and UV nanosecond pulsed laser”, Applied Physics A 71, 601 (2000).
[24] A. Ancona, V. Spagnolo, P. M. Lugara, M. Ferrara, “Optical sensor for real-time monitoring of CO2 laser welding process”, Applied Optics 40, 6019 (2001).
[25] C. Calı, R. Macaluso, M. Mosca, “In situ monitoring of pulsed laser indium_tin-oxide film deposition by optical emission spectroscopy”, Spectrochimica Acta B 56, 743 (2001).
[26] J. Mirapeix, P. B. García-Allende, A. Cobo, O. M. Conde, J. M. López-Higuera, “Feasibility study of imaging spectroscopy to monitor the quality of online welding”, Appl. Opt. 48, 4735 (2009).
[27] S. N. Madjid, I. Kitajima, K. Kagawa, “Low-Cost Monitoring System for Laser Processing”, Japanese Journal of Applied Physics, 41, 6411 (2002).
[28] M. Minsky, 'Microscopy apparatus,' US patent 3,013,467 (July 11, 1957).
[29] T. Yamazaki, I. Komuro, Y. Yazaki, “Moiecular mechanism of cardiac cellular hypertrophy by mechanical stress”, Journal of Molecular and Cellular Cardiology, 27, 133 (1995).
[30] T. Wilson, C. J. R. Sheppard, “Theory and practice of scanning optical microscopy”, Academic Press, London (1984).
[31] C. J. R. Sheppard, D. M. Shotton, “Confocal laser scanning microscopy”, Springer, New York (1997).
[32] M. Gu, “Three dimemsional confocal microscopy”, World Scientific, Singapore (1996).
[33] 臧志仁,“雷射干涉儀於共焦顯微系統之軸向定位控制”,國立中央大學碩士論文(2006)。
[34] M. Born, E. Wolf, “Principles of optics”, Pergamon Press (1980).
[35] 翁兆泓,“共焦螢光影像光譜儀研究”,國立清華大學碩士論文(2006)。
[36] 王義閔,魏良安,高甫仁,“共焦顯微鏡雜記”,物理雙月刊,23 (2001)。
[37] H. J. Jordan, R. Brodmann, “Highly accurate surface measurements by means of white light confocal microscopy”, X. International Colloquium on Surface, Chemnitz, Germany (2000).
[38] C. H. Lee, H. Y. Mong, W. C. Lin, “Noninterferomtric wide-field optical profilometry with nanometer depth resolution”, Optics Letters, 27, 1773 (2002).
[39] C. H. Lee and J. Wang, "Noninterferometric differential confocal microscopy with 2-nm depth resolution," Optics Communications 135, 233 (1997).
[40] S. Paddock, “Over the rainbow: 25 years of confocal imaging”, Biotechniques, 44, 643 (2008).
[41] B. Tan, “Deep micro hole drillng in a silicon substrate using multi-bursts of nanosecond UV laser pulses”, Journal of Micromechanics ang Microengineering, 16, 109 (2006).