| 研究生: |
蘇東葆 Su, Dong-Bao |
|---|---|
| 論文名稱: |
金薄膜鍍層作為無機固態鋰電池介面修飾之研究 Interface Modification in Solid State Battery using Gold Interlayer |
| 指導教授: |
方冠榮
Fung, Kuan-Zong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 固態電解質 、石榴石結構 、Au薄膜中介層 |
| 外文關鍵詞: | Solid Electrolyte, Garnet-structure, Au Thin Film Interlayer |
| 相關次數: | 點閱:43 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在1990年代早期,已經提出使用無機離子導體作為固態電解質的鋰離子二次電池。由於固態電池可以改善電池的安全性,所以引起了極大的關注。在幾種無機離子導體中,石榴石結構的Li7La3Zr2O12(LLZO)在用作鋰電池應用的固態電解質時,顯示出足夠的離子傳導性和結構穩定性。此外,鋰金屬具有極高的克電容量,使用鋰金屬作為負極一直是長期的目標,LLZO對金屬鋰具有優異的還原穩定性。然而,Li和LLZO之間的固體-固體接觸導致LLZO和鋰金屬之間的界面極化很大。目前許多團隊已經使用多種不同金屬或氧化物作為LLZO和鋰金屬之間的中介層,透過熔化態之鋰金屬與中介層形成鋰化合金,進而改善鋰於固態電解質上的潤濕效果,結果顯示出低極化的現象並改善了界面行為,但在化學及電化學穩定性上的測試,例如合金含量在充放電過程中的變化等,仍鮮少被探索。濺鍍是用於獲得金屬和氧化物薄膜的優異薄膜沉積技術之一。因此,本研究的主要目的是(i)濺鍍金薄膜作為鋰與無機固態電解質的中介層的可行性,(ii)評估具有和不具中介層的界面極化; (iii)分析鋰插入金屬薄膜層的過程和行為,(v)證明金中介層在鋰對電極電池和全電池測試對界面極化減小方面的有效性。
本研究中,先已固相反應法合成具有較高離子導電率的Ta摻雜的LLZO奈米粉末並將塊材燒結緻密化至95%相對密度以上。使用射頻磁控濺射將金薄膜沉積在LLZO的拋光表面上。其次,加熱鋰金屬至鋰的熔點附近時,將鋰金屬置於Au膜上,將對可能的合金成形加工進行SEM觀察。在恆定電流下進行鋰對電極電池,並監回饋的電壓。透過電化學阻抗譜(EIS)測量界面產生的阻抗約為455Ω,比沒有Au夾層的阻抗低約20倍。最後,將測試Li / Au(中間層)/ LLZO / LCO的電池,並與沒有Au中介層的電池進行比較,以顯示金屬中介層的有效果。
In early 1990s, rechargeable batteries using inorganic ionic conductors as solid electrolytes have been proposed. Because of their improved safety features, solid state batteries have received great attention recently. Among several inorganic ionic conductors, Garnet-structured Li7La3Zr2O12 (LLZO) show adequate ionic conduction and excellent structural stability when used as the solid electrolyte for Li battery applications. Using Li metal as anode has been a long-term target. Moreover, LLZO exhibits superior reduction stability against metallic Li. However, the poor contact between Li and LLZO has caused large interface polarization between LLZO and Li metal. Several metals and oxides have been used as the interlayer between LLZO and Li metal, and shown improved interface behaviour with lower polarization. Through molten Li, metal interlayer is lithiated and form Li alloy to improve the poor wetting behavior. The effect of Li alloy between garnet and Li interface was demonstrated and evaluated by electrochemical impedance spectroscopy (EIS), but the phenomenon between the chemical and electrochemical stability of garnet against alloy compositions is not to be explored. Sputtering has been one of excellent thin-film deposition techniques for obtaining metallic and oxide thin film. Thus, the main objective of this study is to (i) to investigate the feasibility of sputtering metallic thin film as an interlayer for inorganic solid state battery using Li as anode, (ii) to evaluate the interface polarization with and without interlayer; (iii) to analyze and understand the process and behaviour of Li insertion into metal thin film layer, (v) to demonstrate the effectiveness of metallic interlayer on reduction of interface polarization based on Li stripping/plating and full cell tests.
In this study, Ta doped LLZO with higher ionic conductivity will be densified to >95% dense using nanosized powder by solid state reaction. Gold thin film will be first deposited on the polished surface of LLZO using rf magnetron sputtering. Secondly, Li metal will be placed on top of Au film under heating near melting point of Li. Li stripping and plating will be conducted under constant current with monitoring of applied voltage. Impedance resulted from interface is around 455Ω which is around twenty times lower than the one without Au interlayer measured by Electrochemical impedance spectroscopy (EIS). SEM observation will be performed for possible alloy forming processing. Finally, a full cell based on Li/Au (interlayer)/LLZO/LCO will be tested and compared with the one without Au interlayer to show the effectiveness of metallic interlayer.
Reference
1. Winter, M., et al., Lithium Batteries: Science and Technology. Nazri, G.-A, 2004. 148.
2. Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243-3262.
3. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries, in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, World Scientific. p. 171-179.
4. 郑如定, 锂离子电池和锂聚合物电池概述. 通信电源技术, 2002. 5: p. 18-21.
5. Qian, J., et al., High rate and stable cycling of lithium metal anode. Nature communications, 2015. 6: p. 6362.
6. Lu, Y., Z. Tu, and L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nature Materials, 2014. 13: p. 961.
7. Li, N.-W., et al., An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. Advanced Materials, 2016. 28(9): p. 1853-1858.
8. Stramare, S., V. Thangadurai, and W. Weppner, Lithium Lanthanum Titanates: A Review. Chemistry of Materials, 2003. 15(21): p. 3974-3990.
9. Bates, J.B., et al., Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics, 1992. 53-56: p. 647-654.
10. Thangadurai, V., S. Narayanan, and D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society Reviews, 2014. 43(13): p. 4714-4727.
11. Thompson, T., et al., A Tale of Two Sites: On Defining the Carrier Concentration in Garnet-Based Ionic Conductors for Advanced Li Batteries. Advanced Energy Materials, 2015. 5(11): p. 1500096.
12. Fu, K., et al., Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advances, 2017. 3(4): p. e1601659.
13. Luo, W., et al., Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer. Advanced Materials, 2017. 29(22): p. 1606042.
14. Fu, K., et al., Transient Behavior of the Metal Interface in Lithium Metal–Garnet Batteries. Angewandte Chemie International Edition, 2017. 56(47): p. 14942-14947.
15. Tsai, C.-L., et al., Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS applied materials & interfaces, 2016. 8(16): p. 10617-10626.
16. Huang, M., et al., Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2−xMx)O12 (M = Ta, Nb) solid electrolytes. Journal of Power Sources, 2014. 261: p. 206-211.
17. Inada, R., et al., Synthesis and properties of Al-free Li7−xLa3Zr2−xTaxO12 garnet related oxides. Solid State Ionics, 2014. 262: p. 568-572.
18. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries, in Materials for Sustainable Energy. 2010, Co-Published with Macmillan Publishers Ltd, UK. p. 171-179.
19. Doughty, D.H. Materials issues in lithium ion rechargeable battery technology. 1995. United States.
20. Kurzweil, P. and J. Garche, 2 - Overview of batteries for future automobiles, in Lead-Acid Batteries for Future Automobiles, J. Garche, et al., Editors. 2017, Elsevier: Amsterdam. p. 27-96.
21. Feng, X.M., X.P. Ai, and H.X. Yang, A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries. Electrochemistry Communications, 2004. 6(10): p. 1021-1024.
22. Armand, M., Polymer solid electrolytes - an overview. Solid State Ionics, 1983. 9-10: p. 745-754.
23. Papke, B.L., et al., Ion-pairing in polyether solid electrolytes and its influence on ion transport. Solid State Ionics, 1981. 5: p. 685-688.
24. Zhang, M., et al., Preparation and properties of gel membrane containing porous PVDF-HFP matrix and cross-linked PEG for lithium ion conduction. Frontiers of Chemical Engineering in China, 2008. 2(1): p. 89-94.
25. Yang, C.R., et al., Conductive behaviour of lithium ions in polyacrylonitrile. Journal of Power Sources, 1996. 62(1): p. 89-93.
26. Bates, J.B., et al., Thin-film lithium and lithium-ion batteries. Solid State Ionics, 2000. 135(1): p. 33-45.
27. Inaguma, Y., et al., High ionic conductivity in lithium lanthanum titanate. Solid State Communications, 1993. 86(10): p. 689-693.
28. Aono, H., N. Imanaka, and G.-y. Adachi, High Li+ conducting ceramics. Accounts of chemical research, 1994. 27(9): p. 265-270.
29. Thangadurai, V., H. Kaack, and W.J. Weppner, Novel fast lithium ion conduction in garnet‐type Li5La3M2O12 (M= Nb, Ta). Journal of the American Ceramic Society, 2003. 86(3): p. 437-440.
30. Eichinger, G., Conductivity of Modified Lithium Iodide Samples, in Solid State Batteries, C.A.C. Sequeira and A. Hooper, Editors. 1985, Springer Netherlands: Dordrecht. p. 449-453.
31. Braun, A., et al., Lithium K (1s) synchrotron NEXAFS spectra of lithium-ion battery cathode, anode and electrolyte materials. Journal of power sources, 2007. 170(1): p. 173-178.
32. Kawai, H. and J. Kuwano, Lithium Ion Conductivity of A‐Site Deficient Perovskite Solid Solution La0. 67− x Li3x TiO3. Journal of the Electrochemical Society, 1994. 141(7): p. L78-L79.
33. Narváez-Semanate, J.L. and A.C.M. Rodrigues, Microstructure and ionic conductivity of Li1+xAlxTi2−x(PO4)3 NASICON glass-ceramics. Solid State Ionics, 2010. 181(25): p. 1197-1204.
34. Wang, B., et al., Synthesis, Crystal Structure, and Ionic Conductivity of a Polycrystalline Lithium Phosphorus Oxynitride with the γ-Li3PO4 Structure. Journal of Solid State Chemistry, 1995. 115(2): p. 313-323.
35. Allen, J.L., et al., Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. Journal of Power Sources, 2012. 206: p. 315-319.
36. Hladik, J., Physics of electrolytes. 1972.
37. Barsoum, M.W., Fundamentals of Ceramics. 2002.
38. West, A.R., Solid State Chemistry and its Applications. 2014.
39. West, A.R., Basic solid state chemistry. 1999.
40. Izumi, F., Recent Research Developments in Physics. Transworld Research Network, Trivandrum, 2002. 3: p. 699.
41. Cussen, E.J., Structure and ionic conductivity in lithium garnets. Journal of Materials Chemistry, 2010. 20(25): p. 5167-5173.
42. Awaka, J., et al., Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12. Chemistry Letters, 2011. 40(1): p. 60-62.
43. Awaka, J., et al., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of Solid State Chemistry, 2009. 182(8): p. 2046-2052.
44. Geiger, C.A., et al., Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor. Inorganic Chemistry, 2011. 50(3): p. 1089-1097.
45. Xie, H., et al., Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12. Chemistry of Materials, 2011. 23(16): p. 3587-3589.
46. Awaka, J., et al., Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chemistry letters, 2010. 40(1): p. 60-62.
47. Geiger, C.A., et al., Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorganic chemistry, 2010. 50(3): p. 1089-1097.
48. Adams, S. and R.P. Rao, Ion transport and phase transition in Li 7− x La 3 (Zr 2− x M x) O 12 (M= Ta 5+, Nb 5+, x= 0, 0.25). Journal of Materials Chemistry, 2012. 22(4): p. 1426-1434.
49. Kumar, P.P. and S. Yashonath, Ionic conduction in the solid state. Journal of Chemical Sciences, 2006. 118(1): p. 135-154.
50. Gao, Z., et al., Promises, challenges, and recent progress of inorganic solid‐state electrolytes for all‐solid‐state lithium batteries. Advanced materials, 2018. 30(17): p. 1705702.
51. Zhou, W., et al., Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. Journal of the American Chemical Society, 2016. 138(30): p. 9385-9388.
52. 楊開雲, 鈣鈦礦鈦酸鑭鋰與鋰金屬反應機制及反應抑制研究, in 材料科學及工程學系碩博士班. 2007, 成功大學. p. 1-129.