簡易檢索 / 詳目顯示

研究生: 易瑞祥
Yi, Ruei-Shiang
論文名稱: 神經動作電位之機械表面波與離子通道理論研究
Combined Mechanical Surface Wave and Ion Channel Activation Theories to Nerve Action Potential Propagation
指導教授: 朱銘祥
Ju, Ming-Shaung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 75
中文關鍵詞: 動作電位離子通道具髓鞘神經有限元素法機械作用波
外文關鍵詞: action potential, myelin, ion channel,, saltatory conduction
相關次數: 點閱:130下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經在動作電位期間伴隨許多現象,除了電位的變化之外,還會伴隨著機械特性和熱力學的變化。而神經有無髓鞘包覆也會影響到神經傳導速度。目前文獻所提出的模型雖能描述膜電位變化,機械變化,或同時描述兩者。然而卻無法解釋為何具髓鞘的神經傳導速度比無髓鞘的神經傳導速度快。因此有必要建立一個神經之數值模型,利用此模型描述神經動作電位的產生、傳遞以及模擬具髓鞘神經跳躍式傳導現象。
    本研究利用有限元素法建立神經數值之模型以計算動作電位期間在神經軸突傳遞的機械波,引進離子通道的機械模型,並提出機械波與動作電位的轉換機制。由神經軸突的機械波得知當細胞質的剛性較細胞皮質小時,其傳遞機械波效果最好。而細胞膜和細胞質的黏滯性對細胞膜徑向位移有影響,但對軸向應力卻無影響。神經軸突與髓鞘的交互作用為接觸時,其位移波、應力波以及傳導速度皆會增加。離子通道設為二階質量-阻尼-彈簧過阻尼系統時可以模擬出由Hodgkin–Huxley模型所得之離子通道的電壓變化。
    本研究提出的模型不僅能夠解釋動作電位如何產生,所模擬出來電位變化也與實驗數據符合,也能模擬動作電位的傳遞,其在細胞膜表面產生的位移也接近實驗值,且能夠模擬具髓鞘神經的跳躍式傳導。

    SUMMARY
    Several physics phenomena such as membrane potential, mechanical deformation, thermodynamic changes occur during the propagation of action potential on the axons of peripheral nerve. The myelin affects the propagation speed of action potential. In recent years, new models such as Hodgkin-Huxley model and soliton model for the action potential have been proposed. Although these models can describe the action potential and the mechanical changes, the saltatory conduction still can not be explained by these model. In this thesis, the propagation of action potential is modeled as mechanical action wave propagated on the axon of nerve. A mechanical model of ion channels and transduction mechanism of mechanical wave to action potential were proposed. Finite element models of unmyelinated and myelinated axons were built and propagation of the action were simulated. The results show that, when stiffness of cytoplasm is smaller than cortex, the propagation speed are in agreement with experimental results. The viscosities of membrane and cytoplasm have no effect on radial but axial mechanical wave. When the interaction between myelin and axon is contact, the displacement, stress and conduction speed are increased compared to unmyelinated axon. The over-damped 2nd order mechanical model of ion channels could describe the transduction of stress wave to action potential at the distal end of the electro-mechanical model of axon. The model developed in this thesis can simulate not only the propagation and generation of action potential but also the saltatory conduction.

    目錄 摘要 Ⅰ 致謝 Ⅶ 目錄 Ⅷ 圖目錄 Ⅹ 表目錄 XII 符號表 ⅩⅢ 第一章 緒論 1 1.1 神經電生理學回顧 1 1.2 神經電生理模型 2 1.3 研究動機 4 1.4 研究目的 6 第二章 研究方法 7 2.1 神經的生理學 7 2.2 神經各層之材料性質與交互作用 9 2.2.1細胞膜 9 2.2.2細胞皮質 9 2.2.3細胞質 11 2.2.4髓鞘 11 2.2.5各層間的交互作用力 11 2.3離子通道 12 2.4本研究模型 13 2.4.1神經軸突模型 14 2.4.2統御方程式 16 2.5有限元素法 19 2.5.1有限元素軟體簡介 19 2.5.2有限元素模型 20 2.5.3神經各層交互作用 21 2.5.4邊界條件和作用力 21 2.5.5元素選擇 23 2.5.6網格劃分和模擬案例 23 2.6離子通道模型 25 第三章 結果 29 3.1神經軸突機械波 29 3.1.1模型A 29 3.1.2模型B 38 3.1.3模型C 46 3.2離子通道模型與電導關係 53 第四章 討論 58 4.1模擬結果間比較 58 4.1.1模型A 58 4.1.2模型B 61 4.1.3模型C 63 4.1.4離子通道比較 63 4.2模擬結果和文獻比較 64 4.3本研究模型和其他模型比較 65 4.3.1與Hodgkin-Huxley模型比較 65 4.3.2與孤波模型比較 66 4.3.3與Drapaca的模型比較 66 4.3.4與Hady的模型比較 67 4.4.4綜合比較 67 第五章 結論 68 5.1結論 68 5.2建議 68 參考文獻 70 圖目錄 圖2-1 具髓鞘的神經 7 圖2-2 具髓鞘神經蘭氏節位置 8 圖2-3 無髓鞘的神經軸突組成 8 圖2-4神經細胞皮質蛋白組成影像 10 圖2-5 神經細胞皮質組成 10 圖2-6 離子通道結構 12 圖2-7離子通道活化 12 圖2-8 本研究提出機電系統模型 13 圖2-9 無髓鞘的神經軸突模型 14 圖2-10 具髓鞘的神經軸突模型 15 圖2-11 圓柱膜的幾何形狀與力平衡 16 圖2-12 神經各層間的交互作用 21 圖2-13動作電位時神經所受作用力 22 圖2-14 神經軸突作用力和邊界條件 22 圖2-15 無髓鞘的神經軸突網格 23 圖2-16 具髓鞘的神經軸突網格 24 圖2-17 Hodgkin 與Huxley模型 26 圖2-18 離子電導變化 26 圖2-19 質量-彈簧-阻尼系統 27 圖3-1模型A1的r方向位移 30 圖3-2模型A1的z方向應力 30 圖3-3模型A1的r方向位移比較 31 圖3-4模型A1的z方向應力比較 31 圖3-5模型A2的r方向位移 32 圖3-6模型A2的z方向應力 33 圖3-7模型A2的r方向位移比較 34 圖3-8模型A2的z方向應力比較 34 圖3-9模型A3的r方向位移 35 圖3-10模型A3的z方向應力 35 圖3-11模型A3的r方向位移比較 36 圖3-12模型A3的z方向應力比較 37 圖3-13模型B1的r方向位移 39 圖3-14模型B1的z方向應力 39 圖3-15模型B1與A1的r方向位移比較 40 圖3-16模型B1與A1的的z方向應力比較 40 圖3-17模型B2的r方向位移 41 圖3-18模型B2的z方向應力 41 圖3-19模型B2與A1的的r方向位移比較 42 圖3-20模型B2與A1的的z方向應力比較 42 圖3-21模型B3的r方向位移 43 圖3-22模型B3的z方向應力 44 圖3-23模型B3與A1的的r方向位移比較 44 圖3-24模型B3與A1的的z方向應力比較 45 圖3-25不同黏滯係數下z方向應力 46 圖3-26 模型C1的r方向位移 47 圖3-27 模型C1的z方向應力 47 圖3-28 模型C1的r方向位移傳遞 48 圖3-29 模型C1的z方向應力傳遞 49 圖3-30 模型C2的r方向位移 49 圖3-31 模型C2的z方向應力 50 圖3-32 模型C2的r方向位移傳遞 51 圖3-33 模型C2的z方向應力傳遞 51 圖3-34模型A1(左上)、模型A2(右上)、模型A3(下)應力結果 52 圖3-35 鈉離子通道使用過阻尼系統擬合 53 圖3-36 鈉離子通道使用臨界阻尼系統擬合 54 圖3-37 鉀離子通道使用過阻尼系統擬合 55 圖3-38 鉀離子通道使用臨界阻尼系統擬合 55 圖3-39 鈉離子通道擬合結果驗證 56 圖3-40 鉀離子通道擬合結果驗證 57 圖4-1 細胞質剛性不同r方向位移比較 59 圖4-2 模型A1和模型A2剛性應力比較 59 圖4-3 模型A1和模型A3應力比較 60 圖4-4細胞膜與細胞質有無黏滯性的r方向位移比較 61 圖4-5細胞膜與細胞質有無黏滯性的z方向應力比較 62 圖4-6 不同黏滯係數下最大應力比較 62 圖4-7 Hodgkin-Huxley模型與本模型的電位比較 66 表目錄 表2-1 神經軸突各層材料機械性質 20 表2-2 模擬案例 24 表3-1 模型A比較 38 表4-1 不同模型和真實神經的傳導速度 64 表4-2 各模型間比較 67

    [1] A. L. Hodgkin and A. F. Huxley, “Currents Carried by Sodium and Potassium Ions through the Membrane of the Giant Axon of Loligo,” J. Physiol., vol. 116, pp. 449–472, 1952.
    [2] K. Iwasa and I. Tasaki, “Mechanical Changes in Squid Giant Axons Associated with Production of Action Potentials,” Biochem. Biophyscal. Res. Commun., vol. 95, no. 3, pp. 1328–1331, 1980.
    [3] I. Tasaki and K. Iwasa, “Rapid Pressure Changes and Surface Displacements in the Squid Giant Axon Associated with Production of Action Potentials,” Jpn. J. Physiol., vol. 32, no. 1, pp. 69–81, 1982.
    [4] I. Tasaki and K. Iwasa, “Further Studies of Rapid Mechanical Changes in Squid Giant Axon Associated with Action Potential Production,” Jpn. J. Physiol., vol. 32, no. 4, pp. 505–518, 1982.
    [5] B. C. Abbott, A. V. Hill, and J. V. Howarth, “The Positive and Negative Heat Production Associated with a Nerve Impulse,” Proc. R. Soc. London. Ser. B, Biol. Sci., vol. 148, no. 931, pp. 149–187, 1958.
    [6] J. V. Howarth, “Heat Production in Non-Myelinated Nerves,” Philos. Trans. R. Soc. London. Ser. B, Biol., vol. 270, no. 908, pp. 425–432, 1975.
    [7] I. Tasaki, A. Watanabe, R. Sandlin, L. Carnay, “Changes in Fluorescence, Turbidity, and Birefringence Associated with Nerve Excitation,” Physiology, vol. 61, pp. 883–888, 1968.
    [8] A. L. Hodgkin and A. F. Huxley, “The Components of Membrane Conductance in the Giant Axon of Loligo,” J. Physiol., vol. 116, pp. 473–496, 1952.
    [9] A. L. Hodgkin and A. F. Huxley, “A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve,” J. Physiol., vol. 117, pp. 500–544, 1952.
    [10] A. L. Hodgkin, A. F. Huxley, and B. Katz, “Measurement of Current Voltage Relations in the Membrane of the Giant Axon of Loligo,” J. Physiol., vol. 116, pp. 424–448, 1952.
    [11] A. L. Hodgkin and A. F. Huxley, “The Dual Effect of Membrane Potential on Sodium Conductance in the Giant Axon of Loligo,” J. Physiol., vol. 116, pp. 497–506, 1952.
    [12] T. Heimburg and A. D. Jackson, “On Soliton Propagation in Biomembranes and Nerves,” Proc. Natl. Acad. Sci., vol. 102, pp. 9790–9795, 2005.
    [13] T. Heimburg and A. D. Jackson, “On the Action Potential as a Propagating Density Pulse and the Role of Anesthetics,” Biophys Rev Lett, pp. 57–78, 2006.
    [14] G. F. Achu, S. E. Mkam Tchouobiap and F. M. Moukam Kakmeni, “Periodic Soliton Trains and Informational Code Structures in an Improved Soliton Model for Biomembranes and Nerves,” Phys. Rev. E, vol. 98, no. 2, pp. 1–12, 2018.
    [15] G. F. Achu, F. M. Moukam Kakmeni and A. M. Dikande, “Breathing Pulses in the Damped-Soliton Model for Nerves,” Phys. Rev. E, vol. 97, no. 1, pp. 1–9, 2018.
    [16] C. S. Drapaca, “An Electromechanical Model of Neuronal Dynamics Using Hamilton’s Principle,” Front. Cell. Neurosci., vol. 9, pp. 1–8, 2015.
    [17] A. El. Hady and B. B. Machta, “Mechanical Surface Waves Accompany Action Potential Propagation,” Nat. Commun., vol. 6, pp. 1–7, 2015.
    [18] C. S. Raine, “ Myelin, ” 2 nd edition, pp. 1–50 1984.
    [19] M. N. Rasband and E. Peles, “The Nodes of Ranvier: Molecular Assembly and Maintenance,” Cold Spring Harb. Perspect. Biol., vol. 8, no. 3, pp. 1–16, 2016.
    [20] F. S. Mikelberg, S. M. Drance, M. Schulzer, H. M. Yidegiligne, and M. M. Weis, “The Normal Human Optic Nerve: Axon Count and Axon Diameter Distribution,” Ophthalmology, vol. 96, no. 9, pp. 1325–1328, 1989.
    [21] R. Fettiplace, D. M. Andrews, and D. A. Haydon, “The Thickness, Composition and Structure of some Lipid Bilayers and Natural Membranes,” J. Membr. Biol., vol. 5, no. 3, pp. 277–296, 1971.
    [22] R. Benz and P. Läuger, “Transport Kinetics of Dipicrylamine through Lipid Bilayer Membranes. Effects of Membrane Structure,” BBA - Biomembr., vol. 468, no. 2, pp. 245–258, 1977.
    [23] A. D. Pickar and R. Benz, “Transport of Oppositely Charged Lipophilic Probe Ions in Lipid Bilayer Membranes Having Various Structures,” J. Membr. Biol., vol. 44, no. 3–4, pp. 353–376, 1978.
    [24] A. G. Clark, K. Dierkes, and E. K. Paluch, “Monitoring Actin Cortex Thickness in Live Cells,” Biophys. J., vol. 105, no. 3, pp. 570–580, 2013.
    [25] P. Chugh et al., “Actin Cortex Architecture Regulates Cell Surface Tension,” Nat. Cell Biol., vol. 19, no. 6, pp. 689–697, 2017.
    [26] V. Noireaux et al., “Growing an Actin Gel on Spherical Surfaces,” Biophys. J., vol. 78, no. 3, pp. 1643–1654, 2000.
    [27] S. Dubey et al., “The Axonal Actin-Spectrin Lattice Acts as a Tension Buffering Shock Absorber,” Elife, vol. 9, pp. 1–22, 2020.
    [28] M. Kupiainen et al., “Free Volume Properties of Sphingomyelin, DMPC, DPPC, and PLPC Bilayers,” J. Comput. Theor. Nanosci., vol. 2, no. 3, pp. 401–413, 2005.
    [29] J. Repáková, P. Čapková, J. M. Holopainen, and I. Vattulainen, “Distribution, Orientation, and Dynamics of DPH Probes in DPPC Bilayer,” J. Phys. Chem. B, vol. 108, no. 35, pp. 13438–13448, 2004.
    [30] Y. Zhang, K. Abiraman, H. Li, D. M. Pierce, A.V. Tzingounis, and G. Lykotrafitis, “Modeling of the Axon Membrane Skeleton Structure and Implications for its Mechanical Properties,” PLoS Comput. Biol., vol. 13, no. 2, pp. 1–22, 2017.
    [31] H. Shiga, Y. Yamane, E. Ito, K. Abe, K. Kawabata, and H. Haga, “Mechanical Properties of Membrane Surface of Cultured Astrocyte Revealed by Atomic Force Microscopy,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., vol. 39, no. 6 B, pp. 3711–3716, 2000.
    [32] Y. A. Domanov et al., “Mobility in Geometrically Confined Membranes,” Proc. Natl. Acad. Sci. U. S. A., vol. 108, no. 31, pp. 12605–12610, 2011.
    [33] K. Xu, G. Zhong, and X. Zhuang, “Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons,” Science, vol. 339, pp. 452–457, 2013.
    [34] J. A. Tolomeo, C. R. Steele, and M. C. Holley, “Mechanical Properties of the Lateral Cortex of Mammalian Auditory Outer Hair Cells,” Biophys. J., vol. 71, no. 1, pp. 421–429, 1996.
    [35] R. Bernal, P. A. Pullarkat, and F. Melo, “Mechanical Properties of Axons,” Phys. Rev. Lett., vol. 99, no. 1, pp. 6–9, 2007.
    [36] C. Li, C. Q. Ru, and A. Mioduchowski, “Length-Dependence of Flexural Rigidity as a Result of Anisotropic Elastic Properties of Microtubules,” Biochem. Biophys. Res. Commun., vol. 349, no. 3, pp. 1145–1150, 2006.
    [37] A. Kis et al., “Nanomechanics of Microtubules,” Phys. Rev. Lett., vol. 89, no. 24, pp. 1–4, 2002.
    [38] M. Sato, T. Z. Wong, D. T. Brown, and R. D. Allen, “Rheological Properties of Living Cytoplasm: A Preliminary Investigation of Squid Axoplasm (Loligo Pealei),” Cell Motil., vol. 4, no. 1, pp. 7–23, 1984.
    [39] A. K. Bryan, A. Goranov, A. Amon, and S. R. Manalis, “Measurement of Mass, Density, and Volume during the Cell Cycle of Yeast,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 3, pp. 999–1004, 2010.
    [40] M. J. Gillespie and R. B. Stein, “The Relationship between Axon Diameter, Myelin Thickness and Conduction Velocity during Atrophy of Mammalian Peripheral Nerves,” Brain Res., vol. 259, no. 1, pp. 41–56, 1983.
    [41] G.V. Michailov et al., “Axonal Neuregulin-1 Regulates Myelin Sheath Thickness,” Science, vol. 304, no. April, pp. 700–704, 2004.
    [42] F. Auer, S. Vagionitis, and T. Czopka, “Evidence for Myelin Sheath Remodeling in the CNS Revealed by In Vivo Imaging,” Curr. Biol., vol. 28, no. 4, pp. 549-559.e3, 2018.
    [43] 張正道,“周邊神經細胞與許旺細胞個別及共培養之生物力學研究,”國立成功大學 機械工程學系 博士論文 2013.
    [44] A. Datar, T. Bornschlögl, P. Bassereau, J. Prost, and P. A. Pullarkat, “Dynamics of Membrane Tethers Reveal Novel Aspects of Cytoskeleton-Membrane Interactions in Axons,” Biophys. J., vol. 108, no. 3, pp. 489–497, 2015.
    [45] J. Payandeh, T. Scheuer, N. Zheng, and W. A. Catterall, “The Crystal Structure of a Voltage-Gated Sodium Channel,” Nature, vol. 475, no. 7356, pp. 353–359, 2011.
    [46] P. F. Davies and S. C. Tripathi, “Mechanical Stress Mechanisms and the Cell: An Endothelial Paradigm,” Circ. Res., vol. 72, no. 2, pp. 239–245, 1993.
    [47] B. Martinac, J. Adler, and C. Kung, “Mechanosensitive Ion Channels of E. Coli Activated by Amphipaths,” Nature, vol. 348, no. 6298, pp. 261–263, 1990.
    [48] B. Martinac, “Mechanosensitive Ion Channels: Molecules of Mechanotransduction,” J. Cell Sci., vol. 117, no. 12, pp. 2449–2460, 2004.
    [49] M. D. Carattino, S. Sheng, and T. R. Kleyman, “Epithelial Na+ Channels are Activated by Laminar Shear Stress,” J. Biol. Chem., vol. 279, no. 6, pp. 4120–4126, 2004.
    [50] S. Zeng and Y. Tang, “Effect of Clustered Ion Channels along an Unmyelinated Axon,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 80, no. 2, pp. 1–9, 2009.
    [51] Y. Liu, N. R. May, and C. M. Fan, “Developmental Clustering of Ion Channels at and near the Node of Ranvier,” Dev. Biol., vol. 236, no. 1, pp. 5–16, 2001.
    [52] K. F. Graff, “Wave motion in elastic solids, ”1st edition, Dover Publications, New York, 1975.

    下載圖示 校內:2022-07-23公開
    校外:2022-07-23公開
    QR CODE