簡易檢索 / 詳目顯示

研究生: 李秉和
Lee, Ping-Ho
論文名稱: 金屬層影響氮化鈧鋁薄膜壓電性質之研究
Investigation on the effect of metal layer on the piezoelectric properties of ScAlN thin film
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 86
中文關鍵詞: 表面聲波元件鈮酸鋰氮化鈧鋁金屬層壓電係數機電耦合係數
外文關鍵詞: SAW device, LiNbO3, ScAlN, metal layer, piezoelectric constant, K2
相關次數: 點閱:140下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著5G時代的來臨,表面聲波元件(SAW device)應用於通訊裝置中之濾波器需要朝向高頻段、寬頻寬與優良溫度頻率穩定性發展。以多層結構元件為研究方向,結合不同材料之優點來獲得元件性質的提升。本研究將以 ScAlN/metal/LiNbO3 之結構增進薄膜壓電性質之表現。鈮酸鋰基板具有高機電耦合係數(k2)以及良好的壓電性質,而氮化鈧鋁薄膜也因鈧的參雜使壓電係數 d33 大幅提昇,有利於元件之 k2 提升。而選擇對的金屬層加入能有效增進壓電性質之表現。 除此之外,金屬層的加入會造成不同的波速,可以使更多的聲波保留於元件傳遞的區域之間,使插入損失減少同時 k2 上升。
    將不同的金屬層鋁、鈦、鉻、鉬以電子槍蒸鍍的方式沉積在鈮酸鋰基板上,再將氮化鈧鋁薄膜以反應式磁控濺鍍雙靶的方式沉積於金屬層上。為了提升氮化鈧鋁薄膜之壓電性質,則探討不同金屬及其厚度對於薄膜特性與壓電性質之影響。當氮化鈧鋁薄膜成長於60 nm的鈦金屬層時,其樣品達到最高的d33,提升原本的97%,此時壓電薄膜具有最大之拉伸應力與(002)面傾斜角,應為較大之傾斜角與應力造成較大的晶面扭曲和晶格不對稱,使得壓電係數有顯著的提升,表示此結構有利於應用在多層結構之表面聲波元件。

    In this study, the structure of ScAlN/metal/LiNbO3 will be used to improve the piezoelectric properties. The lithium niobate substrate has a high electromechanical coupling system (k2) and good piezoelectric properties, and the scandium aluminum nitride film has also greatly improved the piezoelectric coefficient, which also improve the k2. The addition of the right metal layer can effectively improve the piezoelectric properties. In addition, the addition of the metal layer will result in different wave speeds, which can keep energy between the regions , reduces the insertion loss and increases k2.
    Different metal layers of aluminum, titanium, chromium, and molybdenum are deposited on the lithium niobate substrate by electron gun evaporation, and then the scandium aluminum nitride film is deposited on the metal layer by reactive magnetron sputtering. In order to improve the piezoelectric properties of scandium aluminum nitride films, the effects of different metals and their thickness on the film properties and piezoelectric properties are discussed. When the scandium aluminum nitride film grows on the 60 nm titanium metal layer, the sample reaches the highest d33, which is an increase of 97%. At this time, the piezoelectric film has the maximum tensile stress and the (002) plane tilt angle, which may cause larger crystal plane distortion and lattice asymmetry, so that the piezoelectric coefficient is significantly improved, indicating that this structure is beneficial to the application of the surface acoustic wave device of the multilayer structure.

    總目錄 摘要 I Extended Abstract II 誌謝 VIII 總目錄 X 圖目錄 XIV 表目錄 XIX 第一章 緒論 1 1-1. 前言 1 1-2. 研究動機與目的 2 第二章 文獻回顧 5 2-1. 濺鍍 5 2-1-1.電漿介紹 5 2-1-2. 濺鍍原理 8 2-1-3 反應式磁控濺鍍 11 2-2. 壓電性與壓電係數d33 13 2-3. 表面聲波元件材料 15 2-3-1. Y-128 鈮酸鋰基板 16 2-3-2. C軸取向氮化鋁薄膜 18 2-3-3. 氮化鈧鋁合金薄膜 21 第三章 研究方法與實驗步驟 25 3-1. 實驗流程 25 3-2. 實驗材料 25 3-3. 金屬蒸鍍設備 27 3-4. 濺鍍設備 28 3-5. 鍍膜步驟與條件 29 3-5-1. 基板前處理 29 3-5-2. 蒸鍍流程 29 3-5-3. 濺鍍流程 30 3-6. 薄膜性質分析 31 3-6-1. 成分與化學鍵分析 31 3-6-2. X光繞射分析(1) 32 3-6-3. X光繞射分析(2) 34 3-6-4. 薄膜表面與橫切面微結構觀察 35 3-6-5. 表面粗糙度分析 35 3-6-6. 應力分析 35 3-6-7. 表面能分析 37 3-6-8 薄膜壓電係數分析 37 第四章 結果與討論 39 4-1. 氮化鈧鋁/40 nm金屬層/鈮酸鋰基板 39 4-1-1. 化學成分分析 39 4-1-2. XRD 晶體結構分析 41 4-1-3. XRD Rocking curve分析 45 4-1-4. XRD 極圖分析 48 4-1-5. 金屬薄膜表面形貌分析 51 4-1-6 氮化鈧鋁薄膜表面形貌及橫截面微結構分析 54 4-1-7 拉曼光譜分析 59 4-1-8 壓電係數分析 63 4-2. 氮化鈧鋁/0,20,40,60,80,100 nm 鈦金屬/鈮酸鋰基板 65 4-2-1. 化學成分分析 65 4-2-2. XRD晶體結構分析 66 4-2-3. XRD rocking curve分析 67 4-2-4. 金屬薄膜表面形貌分析 67 4-2-5. 氮化鈧鋁薄膜表面形貌及橫截面微結構分析 73 4-2-6. 拉曼光譜分析 77 4-2-7 壓電係數分析 80 第五章 結論 81 參考文獻 83

    [1] A. Gohil, H. Modi, and S. K. Patel, "5G technology of mobile communication: A survey," in 2013 International Conference on Intelligent Systems and Signal Processing (ISSP), 2013, pp. 288-292.
    [2] A. Osseiran et al., "Scenarios for 5G mobile and wireless communications: the vision of the METIS project," IEEE Commun. Mag., vol. 52, no. 5, pp. 26-35, 2014.
    [3] T. Takai et al., "IHP SAW technology and its application to microacoustic components," in 2017 IEEE International Ultrasonics Symposium (IUS), 2017: IEEE, pp. 1-8.
    [4] O. Balysheva, "SAW Filters for Mobile Communications: Achievements and Prospects," in 2019 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), 2019: IEEE, pp. 1-4.
    [5] Y. Takamine, T. Takai, H. Iwamoto, T. Nakao, and M. Koshino, "A novel 3.5 GHz low-loss bandpass filter using IHP SAW resonators," in 2018 Asia-Pacific Microwave Conference (APMC), 2018: IEEE, pp. 1342-1344.
    [6] T. Yamada, N. Niizeki, and H. Toyoda, "Piezoelectric and elastic properties of lithium niobate single crystals," Japanese Journal of Applied Physics, vol. 6, no. 2, p. 151, 1967.
    [7] E. L. Wooten et al., "A review of lithium niobate modulators for fiber-optic communications systems," (in English), IEEE J. Sel. Top. Quantum Electron., Article vol. 6, no. 1, pp. 69-82, Jan-Feb 2000.
    [8] R. Turner, P. A. Fuierer, R. Newnham, and T. R. Shrout, "Materials for high temperature acoustic and vibration sensors: A review," Applied acoustics, vol. 41, no. 4, pp. 299-324, 1994.
    [9] M. Akiyama, K. Kano, and A. Teshigahara, "Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films," Applied Physics Letters, vol. 95, no. 16, p. 162107, 2009.
    [10] M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, and N. Kawahara, "Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering," (in English), Adv. Mater., Article vol. 21, no. 5, pp. 593-+, Feb 2009.
    [11] M. S. Lozano, Z. Chen, O. A. Williams, and G. F. Iriarte, "Temperature characteristics of SAW resonators on Sc0.26Al0.74N/polycrystalline diamond heterostructures," Smart Materials and Structures, vol. 27, no. 7, p. 075015, 2018/05/31 2018.
    [12] G. Tang, T. Han, Q. Zhang, K. Yamazaki, T. Omori, and K.-y. Hashimoto, "Validity evaluation of Sc x Al1− x N material constants based on SAW characteristics," Journal of Micromechanics and Microengineering, vol. 26, no. 11, p. 115002, 2016.
    [13] R. Matloub et al., "Piezoelectric Al1−xScxN thin films: A semiconductor compatible solution for mechanical energy harvesting and sensors," Appl. Phys. Lett., vol. 102, no. 15, p. 152903, 2013.
    [14] L. Shu et al., "The characterization of surface acoustic wave devices based on AlN-metal structures," Sensors, vol. 16, no. 4, p. 526, 2016.
    [15] C. Sung, Y. Chiang, R. Ro, R. Lee, and S. Wu, "Effects of conducting layers on surface acoustic wave in AlN films on diamond," Journal of Applied Physics, vol. 106, no. 12, p. 124905, 2009.
    [16] C.-H. Chou, Y.-C. Lin, J.-H. Huang, N. H. Tai, and I.-N. Lin, "Growth of high quality AlN thin films on diamond using TiN/Ti buffer layer," Diamond and related materials, vol. 15, no. 2-3, pp. 404-409, 2006.
    [17] C. Li, X.-Z. Liu, B. Peng, L. Shu, and Y.-R. Li, "AlN-based surface acoustic wave resonators on platinum bottom electrodes for high-temperature sensing applications," Rare Metals, vol. 35, no. 5, pp. 408-411, 2016.
    [18] Y.-F. Chiang, C.-C. Sung, and R. Ro, "Effects of metal buffer layer on characteristics of surface acoustic waves in ZnO/metal/diamond structures," Applied Physics Letters, vol. 96, no. 15, p. 154104, 2010.
    [19] 申鈞婷, "SiO2/ScAlN/LiNbO3 多層結構應用於高機電耦合係數與低溫度飄移係數之表面聲波元件," 成功大學材料科學及工程學系學位論文, pp. 1-94, 2018.
    [20] J. A. Bittencourt, Fundamentals of plasma physics. Springer Science & Business Media, 2013.
    [21] A. Rutscher, "Characteristics of low-temperature plasmas under nonthermal conditions–a short summary," Low Temperature Plasmas: Fundamentals, Technologies and Techniques, 2008.
    [22] J. E. Harry, Introduction to plasma technology. Wiley Online Library, 2010.
    [23] D. E. Harrison, "Theory of the Sputtering Process," Physical Review, vol. 102, no. 6, pp. 1473-1480, 1956.
    [24] E. B. Henschke, "New Collision Theory of Cathode Sputtering of Metals at Low Ion Energies," Physical Review, vol. 106, no. 4, pp. 737-753, 1957.
    [25] T. Kawaharamura, "Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow," Japanese Journal of Applied Physics, vol. 53, no. 5S1, p. 05FF08, 2014.
    [26] M. M. Hassan, "16 - Antimicrobial Coatings for Textiles," in Handbook of Antimicrobial Coatings, A. Tiwari, Ed.: Elsevier, 2018, pp. 321-355.
    [27] L. Liljeholm, "Reactive Sputter Deposition of Functional Thin Films," 2012.
    [28] S. Mertin et al., "Piezoelectric and structural properties of c-axis textured aluminium scandium nitride thin films up to high scandium content," Surface and Coatings Technology, vol. 343, pp. 2-6, 2018.
    [29] W. Heywang, K. Lubitz, and W. Wersing, Piezoelectricity: evolution and future of a technology. Springer Science & Business Media, 2008.
    [30] A. Qabur and K. Alshammari, A Systematic Review of Energy Harvesting from Roadways by using Piezoelectric Materials Technology. 2018.
    [31] K.-K. Wong, Properties of lithium niobate (no. 28). IET, 2002.
    [32] R. S. Weis and T. K. Gaylord, "LITHIUM-NIOBATE - SUMMARY OF PHYSICAL-PROPERTIES AND CRYSTAL-STRUCTURE," (in English), Appl. Phys. A-Mater. Sci. Process., Article vol. 37, no. 4, pp. 191-203, 1985.
    [33] C. Fei et al., "AlN piezoelectric thin films for energy harvesting and acoustic devices," Nano Energy, vol. 51, pp. 146-161, 2018.
    [34] J. Cervenka et al., "Nucleation and chemical vapor deposition growth of polycrystalline diamond on aluminum nitride: role of surface termination and polarity," Crystal Growth & Design, vol. 13, no. 8, pp. 3490-3497, 2013.
    [35] X. J. Xie et al., "Magneto-transport property of an AlInN/AlN/GaN heterostructure," (in English), Physica B, Article vol. 562, pp. 112-115, Jun 2019.
    [36] M. Guziewicz et al., "Structural and electrical studies on Ti/Al-based Au-free ohmic contact metallization for AlGaN/GaN HEMTs," (in English), Mater. Sci. Semicond. Process, Article vol. 96, pp. 153-160, Jun 2019.
    [37] D. B. Li, K. Jiang, X. J. Sun, and C. L. Guo, "AlGaN photonics: recent advances in materials and ultraviolet devices," (in English), Adv. Opt. Photonics, Review vol. 10, no. 1, pp. 43-110, Mar 2018.
    [38] W. Zhao and D. J. Kong, "Microstructure, bonding strength, and friction-wear performance of AlCrN/nitrided layer composite coating on H13 hot work mould steel," (in English), Int. J. Appl. Ceram. Technol., Article vol. 16, no. 3, pp. 951-965, May-Jun 2019.
    [39] M. Wiesing, T. de los Arcos, and G. Grundmeier, "UHV AFM based colloidal probe studies of adhesive properties of VAlN hard coatings," (in English), Appl. Surf. Sci., Article vol. 428, pp. 767-774, Jan 2018.
    [40] G. Greczynski et al., "Extended metastable Al solubility in cubic VAlN by metal-ion bombardment during pulsed magnetron sputtering: film stress vs subplantation," (in English), J. Appl. Phys., Article vol. 122, no. 2, p. 12, Jul 2017, Art no. 025304.
    [41] B. Deng, Y. Tao, H. L. Liu, and P. Y. Liu, "Influence of niobium ion implantation on the microstructure and tribological properties of TiAlN coatings," (in English), Surf. Coat. Technol., Article; Proceedings Paper vol. 228, pp. S554-S557, Aug 2013.
    [42] L. Ramirez-Montes, W. Lopez-Perez, A. Gonzalez-Garcia, and R. Gonzalez-Hernandez, "Structural, optoelectronic, and thermodynamic properties of YAlN semiconducting alloys," (in English), J. Mater. Sci., Article vol. 51, no. 6, pp. 2817-2829, Mar 2016.
    [43] S. Marauska et al., "Sputtered thin film piezoelectric aluminum nitride as a functional MEMS material," Microsystem technologies, vol. 18, no. 6, pp. 787-795, 2012.
    [44] K. Knisely, E. Douglas, J. Mudrick, M. Rodriguez, and P. Kotula, "Thickness dependence of Al0. 88Sc0. 12N thin films grown on silicon," Thin Solid Films, vol. 675, pp. 66-72, 2019.
    [45] K. R. Talley et al., "Implications of heterostructural alloying for enhanced piezoelectric performance of (Al, Sc) N," Physical Review Materials, vol. 2, no. 6, p. 063802, 2018.
    [46] C. Höglund et al., "Wurtzite structure Sc 1− x Al x N solid solution films grown by reactive magnetron sputter epitaxy: Structural characterization and first-principles calculations," J. Appl. Phys., vol. 107, no. 12, p. 123515, 2010.
    [47] E. Soergel, "Piezoresponse force microscopy (PFM)," Journal of Physics D: Applied Physics, vol. 44, no. 46, p. 464003, 2011.
    [48] A. Sanz-Hervas, E. Iborra, M. Clement, J. Sangrador, and M. Aguilar, "Influence of crystal properties on the absorption IR spectra of polycrystalline AlN thin films," Diamond and related materials, vol. 12, no. 3-7, pp. 1186-1189, 2003.
    [49] M. Clement, V. Felmetsger, J. Olivares, T. Mirea, and J. Sangrador, "Combined assessment of Al 1-x Sc x N thin films by RBS, XRD, FTIR and BAW frequency response measurements," in 2019 IEEE International Ultrasonics Symposium (IUS), 2019: IEEE, pp. 720-723.
    [50] L. E. McNeil, M. Grimsditch, and R. H. French, "Vibrational spectroscopy of aluminum nitride," Journal of the American Ceramic Society, vol. 76, no. 5, pp. 1132-1136, 1993.

    下載圖示 校內:2021-07-13公開
    校外:2021-07-13公開
    QR CODE