簡易檢索 / 詳目顯示

研究生: 曾寶慶
Tseng, Pao-Ching
論文名稱: 多媒體資料庫中具時間性之空間樣板探勘
Mining Temporal Spatial Patterns in Multimedia Databases
指導教授: 曾新穆
Tseng, Shin-Mu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 61
中文關鍵詞: 樣板變化空間樣板多媒體資料庫資料探勘
外文關鍵詞: multimedia database, spatial pattern, temporal pattern change, data mining
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來資料探勘的技術已有許多的研究與應用,而其在多媒體上的運用則是一個剛興起的領域,其中,多媒體資料庫中空間樣板之探勘為一重要課題。近年雖然有少數相關研究被提出,其所探勘之空間關係仍然非常侷限,這些研究不能完全表達物件之間的空間關係與在時間上物件、空間之間的變化。在本研究論文中,我們提出可以有效率探勘多媒體資料庫中物件之間的空間樣板之新方法。基於多媒體資料庫中所擷取出的物件之座標值,我們可以找出物件之間的空間關係,例如東北方、東南方、西北方、西南方等空間關係。另外,我們更進一步的把多媒體資料庫加上時間的概念,區分出多個時段,分別探勘每個時段的空間樣板外,並探討這些樣板從一個時段到下一個時段時,空間樣板發生了什麼變化,並提出可找出這些樣板變化之方法。對於我們所提出之方法,我們亦經由詳細之實驗分析,探討其在不同環境下之效能表現。

      A number of studies and applications of data mining have been done in recent years. However, the existing work on mining spatial patterns in multimedia databases is very restricted although it is an emerging research topic. The existing mining methods can only find simple spatial relationships among objects and do not consider the temporal changes of the spatial patterns. In this paper, we propose an effective method that is concerned with the discovery of spatial patterns among objects in multimedia databases. The proposed method can efficiently discover complex spatial relationships among objects like the northeast, southeast, northwest, and southwest. Besides, we further explore the temporal concept for spatial patterns in multimedia databases. An effective method is also proposed for finding the temporal changes of spatial patterns. Through empirical evaluation, the proposed method is shown to deliver excellent performance under different system conditions.

    第一章 導論…………………………………………………………………1 1.1 研究背景…………………………………………………………………1 1.2 研究動機…………………………………………………………………1 1.3 問題描述…………………………………………………………………2 1.4 研究方法…………………………………………………………………3 1.5 論文架構…………………………………………………………………5 第二章 相關研究………………………………………………………………6 2.1 關聯式規則………………………………………………………………6 2.1.1 關聯式規則………………………………………………………6 2.1.2 Apriori演算法……………………………………………………8 2.1.3 循序樣式探勘法…………………………………………………13 2.2 多媒體探勘技術…………………………………………………………14 2.2.1 多媒體關聯規則( Multimedia association rules) ………………15 2.2.2 空間關係…………………………………………………………21 2.3 相關研究總結……………………………………………………………25 第三章 具時間性之空間樣板探勘…………………………………………26 3.1 空間樣板的定義…………………………………………………………26 3.2 空間樣板的探勘…………………………………………………………27 3.3 具時間性的空間樣板……………………………………………………34 第四章 效能分析………………………………………………………………39 4.1 模擬模型與基本資料模組………………………………………………39 4.1.1 資料的產生………………………………………………………39 4.1.2 基本資料模組……………………………………………………40 4.2 實驗規劃…………………………………………………………………41 4.3 實驗結果…………………………………………………………………43 4.3.1 改變minimum support的實驗…………………………………43 4.3.2 改變AvgObj的實驗..……………………………………………45 4.3.3 改變物件個數的實驗……………………………………………46 4.3.4 改變時間區段數的實驗…………………………………………47 4.3.5 特殊情況…………………………………………………………50 4.4 實驗總結…………………………………………………………………54 第五章 結論與未來的研究方向……………………………………………55 5.1 結論…………………………………………………………………55 5.2 應用…………………………………………………………………55 5.3 未來研究方向……………………………………………………………56 參考文獻…………………………………………………………………57

    [1] R. Agrawal, T. Imielinkski, and A. Swami. Mining Association Rules between Sets of Items in Large Databases. Proceedings of ACM SIGMOD Conference on Management of Data, pages 207-216, Washington, D.C., May 1993.
    [2] R. Agrawal and R.Srikant. Fast Algorithm for Mining Association Rules. Proceedings of the Very Large Data Base (VLDB-94), pp. 487-499, Santiago, Chile, 1994.
    [3] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. of the 11th Int’l Conference on Data Engineering, pages 3-14, Taipai, Taiwan, March 1995.
    [4] J. Ayres, J.E. Gehrke, T. Yiu, and J. Flannick. Sequential Pattern Mining Using Bitmaps. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, July 2002.
    [5] Y. Fu and J. Han. Meta-rule-guided mining of association rules in relational databases. In Proceedings 1st Int. Workshop Integration of Knowledge Discovery with Deductive and Object-Oriented Databases, pages 39–46, Singapore, Dec. 1995.
    [6] J. Han, J. Pei, and Y. Yin, Mining Frequent Patterns without Candidate Generation. In Proceedings 2000 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00), vol. 29, no. 2, pages 1-12, Dalls, Texas, USA, May 2000.
    [7] J. Han and M. Kamber. Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems, Jim Gray, Series Editor Morgan Kaufmann Publishers, pages 1-38, August 2000.
    [8] KITAMOTO and Asanobu. IMET: Image Mining Environment for Typhoon Analysis and Prediction. Multimedia Mining, Djeraba, C. (Eds.), pages 7-24, Kluwer Academic Publishers, ISBN 1-4020-7247-3, Nov. 2002.
    [9] Z.-N. Li, O. R. Zaïane, and Z. Tauber. Illumination Invariance and Object Model in Content-Based Image and Video Retrieval. Journal of Visual Communication and Image Representation, Academic Press, vol. 10, n 3, pages 219–244, September 1999.
    [10] F. Masseglia, P. Poncelet and M. Teisseire. Incremental Mining of Sequential Patterns in Large Databases. Actes des 16imes Journes Bases de Donnes Avances (BDA’00), Blois, France, October 2000.
    [11] R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations of constrained association rules. In Proceedings of 1998 ACM-SIGMOD Int. Conf. Management of Data, pages 13-24, Seattle, Washington, June 1998.
    [12] C. Ordonez and E. Omiecinski. Image mining: A new approach for data mining. Technical Report GITCC-98-12, Georgia Institute of Technology, College of Computing, 1998.
    [13] C. Ordonez and E. Omiecinski. Discovering Association Rules based on Image Content. Proceedings of the IEEE Advances in Digital Libraries Conference, pages 38-49, Baltimore, Maryland, May 1999.
    [14] J.S. Park, M.-S. Chen, and P. S. Yu, An Effective Hash-Based Algorithm for Mining Association Rules. Proceedings of the ACM SIGMOD Conference on Management of Data, pages 175-186, May 1995.
    [15] S. Ramaswamy, S.Mahajan, and A. Silberschatz, On the Discovery of Interesting Patterns in Association Rules. In Proc. 1998 Int. Conf. Very Large Data Base, pp. 368-379, New York, NY, August 1998.
    [16] R. O. Stehling, M. A. Nascimento, and A. X. Falcão, On "shapes" of colors for content-based image retrieval. Proceedings of the ACM Multimedia 2000 Workshops, pp. 171-174, November 2000.
    [17] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and Performance Improvements. Proceedings of the International Conference on Extending Database Technology (EDBT). Pages 3-17. Avignon, France, March 1996.
    [18] W. Wang, Y. Song, and A. Zhang. Semantics-Based Image Retrieval by Region Saliency. Image and Video Retrieval : International Conference, CIVR 2002, M.S. Lew, N. Sebe, J.P. Eakins, pp. 29-37, July 2002.
    [19] O. R. Zaïane, J. Han, Z.-N. Li, J. Y. Chiang, and S. Chee. MultiMediaMiner: A system prototype for multimedia datamining. In Proc. Int'l Conf. on Management of Data (ACM-SIGMOD'98), pages 581-583, Seattle, June 1998.
    [20] R. Zaïane, J. Han, Z.-N. Li, and J. Hou. Mining multimedia data. In proc. CASCON'98: Meeting of Minds, pp. 83-96, Toronto, Canada, November 1998.
    [21] R. Zaïane, J. Han and H. Zhu. Discovering Spatial Associations in Images. Data Mining and Knowledge Discovery: Theory, Tools, and Technology II, SPIE 14th Int'l Symposium on Aerospace/Defense Sensing, Simulation and Controls, pp. 138-147, Orlando, FL, April 2000.
    [22] R. Zaïane, J. Han and H. Zhu. Mining Recurrent Items in Multimedia with Progressive Resolution Refinement. Proc. 2000 Int. Conf. on Data Engineering (ICDE'00), San Diego, CA, March 2000.
    [23] O. R. Zaïane. Discovering Patterns With and Within Images. Chapter 2 in Multimedia Mining- A Highway to Intelligent Multimedia Documents, edited by Chabane Djeraba, published by Kluwer Accademic Publishers, pages 27-42, 2002.
    [24] M. J. Zaki, S. Parthasarathy, W. Lin, and M. Ogihara. Evaluation of sampling for data mining of association rules. Technical Report 617, University of Rochester, Rochester, NY, 1996.
    [25] X. Zhu, W. G. Aref, J. Fan, A. C. Catlin, and A. K. Elmagarmid. Medical Video Mining for Efficient Database Indexing, Management and Access. Proceedings of the 19th International Conference on Data Engineering, Bangalore, India, pages 569-580, March 5-8, 2003.

    下載圖示 校內:立即公開
    校外:2004-08-17公開
    QR CODE