| 研究生: |
黃子謙 Huang, Tzu-Chien |
|---|---|
| 論文名稱: |
以油酸分散氫氧化鋁膠製造之
奈米級α相氧化鋁粉末燒結研究 On the Sintering of Nanometer-Sized α-alumina Powders Manufactured by Emulsion of Boehmite and Oleic Acid. |
| 指導教授: |
溫紹炳
Wen, Shaw-Bing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 氧化鋁 、奈米 、燒結 |
| 外文關鍵詞: | alumina, nanometer, sinter |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以化學沉澱法製造之氫氧化鋁膠並以體積比1:1.2與油酸混合後,由濕式攪磨機攪磨120分鐘,形成的乳膠,將之放入氧化鋁坩鍋中,再於乳膠表面鋪上一層碳黑,置於通氮氣之高溫爐內,以10℃/分的速度升溫至1100℃持溫20分鐘進行煅燒,以得到奈米級α相氧化鋁粉末。
以此粉末為起始原料,添加氫氧化鋯膠與氫氧化鋁膠作為黏結劑,過100目篩造粒並以室溫陰乾,再以單軸加壓至600MPa,可得未加膠的生坯(N)、添加氫氧化鋯膠的生坯(Zr)以及添加氫氧化鋁膠的生坯(Al),再經過1200℃至1500℃間之燒結溫度持溫兩個小時的燒結,得到不同之氧化鋁燒結體,對燒結體進行視密度、體積收縮率、顯微結構、粒徑分布與晶相分析,以獲得燒結體性質。
在粉末製備上,以油酸分散氫氧化鋁膠升溫至1200℃並持溫20分後,形成奈米級純α相氧化鋁粉末,其X光繞射測定之晶徑是38nm、由比表面積換算得到的粒徑是60nm,由掃描式電子顯微鏡照片量得的費式粒徑,其分布較符合Rosin-Rammler分布,且粉末的粒徑分布相當集中,其中位粒徑約150nm。在生坯成形階段,添加不同氫氧化物膠體可以有效的將生坯密度由52%(N)分別提高至添加氫氧化鋯膠體之57%(Zr)及氫氧化鋁膠體之60%(Al)。添加氫氧化物膠體有助於降低坯體燒結時體積的收縮率,由未添加之體收縮率48%(N)降低至添加氫氧化鋁膠之40%(Al)。這個添加氫氧化鋁膠的坯體可於1400℃持溫2小時燒結達到95%的相對密度,相對於沒有添加的坯體(N)降低了100℃的燒結溫度。燒結體的費式中位粒徑約650nm左右。由燒結體的X光繞射分析可知添加氫氧化鋁膠的燒結體在1200℃後已經全部相變成純α相的氧化鋁燒結體。添加氫氧化鋯膠的燒結體(Zr),於氧化鋁晶界上有單斜晶相氧化鋯的生成,具有氧化鋯韌化氧化鋁之燒結體微結構。
This research was study the sintering behaviors of nanometer-sized α-alumina powders The nanometer-sized α-alumina powders was manufactured with aluminum hydroxide gel precursor mixing with oleic acid and stir-milled for 120 mins. to form an emulsion and calcined.
Green body of sintering was prepared by the alumina powders adding up aluminum hydroxide gel or zirconium hydroxide gel as binders. After pelleting with 100 mesh screen and drying, the green compact were formed with 600 MPa automatic uniaxial hydraulic press. These green bodies were sintered at 1200℃ to 1500℃ for 2 hours and furnace-cooling to room temperature. The sintered ceramic bodies were identified by relative apparent density, volume shrinkage rate, micro-structure observation and grain size distribution measurement.
The aluminum hydroxide gel mixed with oleic acid needed to heat until 1200℃ for 20 mins. to transform into nanometer-sized α-alumina powders. XRD indicated that the average size of this α-alumina powders of individual crystal diameters was 38 nm, and the BET calculated that was 60nm. The relative density of green compacts were measured 60% of adding aluminum hydroxide gel, 57% of adding zirconium hydroxide gel and 52% with no gel binders. The volume shrinkage rate of sintered body’s were measured 40% of adding aluminum hydroxide gel, 46% of adding zirconium hydroxide gel and 48% with no gel binders. The relative density of sintered body were calculated 95% of the α-alumina powders with alumina hydroxide gel binder in sintering conditions of 1400℃for 2 hours duration. This sintering temperature was 100℃ lower than that of no gel binder green compact. The grain’s size of sintered bodies were identified 650nm, which was the finest of the sintered bodies. The microstructure of the sintered body prepared by adding zirconium hydroxide gel was observed the zirconia grains in the boundary of
alumina grains.
尹邦躍 (2002), “奈米時代”, 五南圖書出版股份有限公司, 台北市。
汪建民主編 (1999), “陶瓷技術手冊(上)、(下)”, 中華民國粉末冶金協會, 台北市。
高濂、李蔚 (2003), “奈米陶瓷”, 五南圖書出版股份有限公司, 台北市。
陳家榮 (2003), “Advanced Ceramic Powders and Nano Ceramic Powders”, 第一屆海峽兩岸粉體製備科學與技術研討會, 台南市。
Chih-Peng Lin, Shaw-Bing Wen and Ting-Tai Lee (2002), “Preparation of Nanometer Sized α-Alumina Powder by Calcining an Emulsion of Boehmite and Oleic Acid”, Journal of the American Ceramic Society, 85, 1, P. 129-134.
謝沐辰 (2004), “以油酸分散氫氧化鋁膠製造α相氧化鋁粉末程序之研究”, 碩士論文, 國立成功大學資源工程學系。
K. Prabhakaran, S. Ananthakumar and C. Pavithran (1999), “Gel Casting of Alumina Using Boehmite as a Binder”, Journal of the European Ceramic Society 19, P. 2875-2881.
A.R. Boccaccini, C. Kaya (2002), “Alumina ceramics based on seeded boehmite and electrophoretic deposition”, Ceramics International 28, P. 893–897.
S. Ananthakumar, P. Manohar and K.G.K. Warrier (2004), “Effect of boehmite and organic binders on extrusion of alumina”, Ceramics International 30, P. 837–842.
F.F.Lange and Margaret M.Hirlinger (1983), “Hindrance of Grain Growth in Al2O3 by ZrO2 Inclusions”, Structural Ceramics, Rockwell International Science Center, California 91360.
W.H. Tuan, R.Z. Chen, T.C. Wang, C.H. Cheng and P.S. Kuo (2004), “Mechanical properties of Al2O3/ZrO2 composites”, Journal of the European Ceramic Society 22, P. 2827–2833.
趙承琛 (1985), “界面科學基礎”, 復文書局, 台南市。
Warren L. J. (1984), “Principles of Mineral Flotation”, Australasian Institute of Mining and Metallurgy.
Robort J. P. and L. Bergstrom (1994), “Surface and ColloidChemistry in Advanced Ceramics Processing”, Marcel Dekker.
Shanefield D. J. (1995), “ Organic Additives and Ceramic Processing”, Kluwer Academic Publishers, P. 211-254.
Yoshikiyo M. (1992), “Micelles Theoretical and Applied Aspects”, chapter1~4, Plenum Press, New York.
張有義,郭蘭生編譯 (1999), ”膠體及界面化學入門”, 高立圖書有限公司, 台北市。
J. S. Wilson and Mcconnel J. D. (1989), “A Kinetic Study of the system γ-AlOOH”, Journal of Solid State Chemistry 34, P. 315~322.
D. L. Hart (1990), “Alumina Chemical :Science and Technology Handbook”, Journal of the American Ceramic Society.
汪建民 (1987) , “精密陶瓷科技”, 工業技術研究院, 新竹市。
Ryshkewitch E.( 1960), “Zirconia in Oxide Ceramics”, 1st ed., Chap.II.5Academic. Press., New York.
D.J. Green, R.H.J. Hannink, and M.V. Swain (1989) “Transformation Toughening of Ceramics.”, CRC Press, Inc.
S. Taruta, K. Kitajima, N. Takusagawa, K. Okada and N. Otsuka (1992), “Influence of Coarse Particle Size on Packing and Sintering Behavior of Bimodal Size Distributed Alumina Powder Mixtures”, Journal of the Ceramic Society of Japan, 101 [5], P. 583-588.
J. P. Smith and G. L. Messing (1984), “Sintering of Bimodally Distributed Alumina Powders”, Journal of the American Ceramic Society, 67 [4], P. 238-242.
T. Kimura, Y. Matsuda, M. Oda and T. Yamaguchi (1987), “Effects of Agglomerates on the Sintering of Alpha-Al2O3”, Ceram. International, 13, P. 27-34.
Paul Bowen and Claude Carry (2002), “From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides”, Powder Technology, 128, 2-3, P. 248-255.
G. Li and X. Sun (2000), “Synthesis and Sintering Behavior of a Nanocrystallinea-Alumina Powder” , Acta Mater, 48, P. 3103-3112.
J. W. Halloran (1984) , “Agglormerates and Agglomeration in Ceramic Processing, in Ultrastructure Processing of Ceramics, Glass, and Composites” , Eds. L. L. Henchand D. R. Ulrich Wiley, New York.
H. Rumpf and H. Schubert (1978), “ Adhesion Forces in Agglomeration Processes, in Ceramic Processing before Firing”, Eds. G. Y. Onoda and L. L. Hench, Wiley, New York.
R. Pampuch and Haberko (1983), “Agglomerate in Ceramic Micropowders and their Behavior on Cold Pressing and Sintering” , in Material Science Monograph, 16, Ceramic Powder, Ed. P. Vincernzini.
W. D. Kingery and B. Francois (1967), “Sintering of Crystalline Oxides, I. Interactions between Grain Boundaries and Pores”, in Sintering and Related Phenomena. Eds. G. C. Kuczynske, N .A. Hooton, and G. F. Gibbon, P. 471 Gordon Breach, New York.
F. F. Lange(1984), “Sinterability of Agglomerated Powders,” Journal of the American Ceramic Society, 67 [2], P. 83-88.
J. Zheng and J. S. Reed (1989), “Effect of Particle Packing Characteristics on Solid-State Sintering”, Journal of the American Ceramic Society, 72 [5], P.810-817.
M. F. Ashby (1974), “A First Report on Sintering Diagrams”, Acta Metal., 22, P. 275-289.