簡易檢索 / 詳目顯示

研究生: 陳家瑜
Chen, Chia-Yu
論文名稱: 整合高乘載專用車道及匝道儀控最佳化模型之構建
An Optimal Control Model for Integrated High Occupancy Vehicle Lane and Ramp Metering
指導教授: 胡大瀛
Hu, Ta-Yin
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 71
中文關鍵詞: 整合性交通管理與控制高乘載專用車道匝道儀控需求預測
外文關鍵詞: Integrated Traffic Management and Control, High Occupancy Vehicle (HOV) Lane, Ramp Metering, Demand Prediction
相關次數: 點閱:153下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著高速公路的交通量不斷的成長,道路基礎設施早已供不應求,尤其在都會區之尖峰時刻常是處在嚴重擁擠的狀態。因此,高速公路的管理與控制遂成為非常重要的議題。在高速公路常見的管理與控制手段包括:匝道儀控、路徑導引、可變速限控制,以及高乘載專用車道。然而,如何這些不同的控制策略以達到最佳化控制亦是個相當關鍵的問題。
    由於先前有關高速公路整合控制模式之文獻中,少有探討高乘載之議題,然而近年來,交管單位持續積極推動高乘載專用車道,因此有其納入考量之必要,以作為交管單位未來規劃與執行高乘載專用車道之參考依據。因此,本研究之目標為針對高乘載專用車道及匝道儀控,發展整合性控制模式,利用數學規劃的方式求得最佳化的控制,本模式為最小整體路網之延滯時間,以改善高速公路之擁擠問題。首先,藉由羅吉特模式,進行使用高乘載專用車道之需求預測,而利用套裝軟體CPLEX求解,進行績效評估分析。
    在數值實驗中,本研究選定台北市區域之高速公路做為測試路網,並以高雄市區路網作為實際路網進行探討,並依據不同的需求水準,設計出低中高流量之情境分別進行討論。從數值實驗結果可得,本研究所提出之整合性控制模型改善高速公路之服務績效。

    With the increase of the traffic volume on freeway, the road infrastructure has already been insufficient, especially in the urban areas during the rush hours are often in congestion condition. Therefore, freeway traffic control and management strategies have become an important issue around the world. The common strategies include ramp metering, route guidance, variable speed limits (VSLs), and high occupancy vehicle (HOV) lane. However, how to integrate these strategies to achieve optimal control is a crucial problem.
    According to the previous researches on freeway integrated control model, the strategy of HOV lane is seldom considered. However, in the recent years, HOV lane has already been promoted actively in Taiwan, the consideration of HOV lane with other strategies is essential. Hence, the aim in this research is focus on HOV lane and ramp metering to develop an integrated control model. The objective of mathematical model is to minimize total delay on freeway. Using the logit model to predict the HOV demand, the probability of using HOV lane is obtained. Though the optimization software, CPLEX, solves the optimal problems to analyze the performance of network.
    In the numerical experiment, the model is implemented in a test network and Kaohsiung network. The results present that influence of various strategies is different in three kinds of cases, and the integrated control approaches can enhance traffic efficiency.

    ABSTRACT II ABSTRACT (CHINESE) III ACKNOWLEDGEMENTS IV TABLE OF CONTENTS VI LIST OF TABLES IX LIST OF FIGURES XI CHAPTER 1 INTRODUCTION 1 1.1 Research Background and Motivation 1 1.2 Research Objectives 3 1.3 Research Flow Chart 3 1.4 Overview 4 CHAPTER 2 LITERATURE REVIEW 6 2.1 High Occupancy Vehicle Lane 6 2.1.1 The Overseas HOV Study 6 2.1.2 The Domestic HOV Study 8 2.2 HOV Demand Prediction Method 9 2.2.1 Characteristics of HOV Demand 9 2.2.2 Logit Model 10 2.3 Freeway Management and Control 12 2.3.1 Freeway Mainstream Management 12 2.3.2 Ramp Metering 13 2.4 Summary 16 CHAPTER 3 RESEARCH METHODOLOGY 17 3.1 Problem Statement and Research Assumption 17 3.2 Research Framework 20 3.3 Logit Model 22 3.3.1 LOVs’ Transferring Incentives 23 3.3.2 HOVs’ Using Incentives 24 3.4 Freeway Control Model Formulation 25 3.4.1 The Segment Model 25 3.4.2 The Throughput Calculating Model 27 3.4.3 The Level of Service Constraint on HOV Lane 28 3.4.4 Ramp Metering─ALINEA 28 3.5 Mathematical Formulation 29 3.6 Summary 32 CHAPTER 4 PROGRAM DEVELOPMENT 33 4.1 HOV Lane Demand Prediction 33 4.1.1 Solution Procedure 33 4.1.2 Parameter Setting 37 4.2 Freeway Integrated Control Model 38 4.2.1 Solution Procedure 38 4.2.2 Parameter Setting 41 4.3 Summary 41 CHAPTER 5 NUMERICAL ANALYSIS 42 5.1 Network Application 42 5.1.1 Test Network 42 5.1.2 The Corridor Network in Kaohsiung 44 5.2 Experimental Setups 50 5.2.1 Test Network 50 5.2.2 The Corridor Network in Kaohsiung 52 5.3 Experimental Results 54 5.3.1 Mode Choice and Lane Choice Experiment 54 5.3.2 Freeway Integrated Control Experiment 57 5.4 Summary 65 CHAPTER 6 CONCLUSIONS AND SUGGESTIONS 66 6.1 Conclusions 66 6.2 Suggestions 67 REFERENCES 69

    1. Chang, S. J. (2012), An Optimal Control Model for Integrated Traffic Corridor Management, Master dissertation, Department of Transportation and Communication Management Science, National Cheng Kung University, Taiwan, ROC.
    2. Chu, C. Y. (2010), High-Occupancy Regulation Policy: Case of National Freeway No.1 in Northern Taiwan, Master dissertation, Graduate Institute of Logistics Management, National Dong Hwa University, Taiwan, ROC.
    3. Dahlgren, J. (1998), “High Occupancy Vehicle Lanes: Not Always More Effective Than. General Purpose Lanes,” Transportation Research A, Vol. 32, No. 2, pp.99-114.
    4. Erhardt, G. D., Koppelman, F. S., Freedman, J., Davison, W. A., and Mullins, A. (2002), “Modeling the choice to use toll and HOV facilities,” Proc., Transportation Research Board 2003 Annual Meeting CD-ROM, TRB, Washington, D.C.
    5. FHWA (1996), Predicting the Demand for High Occupancy Vehicle Lanes: Final Report, , Washington, D.C.
    6. FHWA (1996), Traffic Control Systems Handbook, FHWA-SA-95-032, Federal Highway Administration, Department of Transportation, Washington, D.C.
    7. FHWA (2006), Ramp Management and Control Handbook, FHWA-HOP-06-001, Federal Highway Administration, Department of Transportation, Washington, D.C.
    8. Haj-Salem, H., and Papageorgiou, M. (1995), “Ramp metering impact on urban corridor traffic: field results,” Transportation Research A, Vol. 29A, No. 4, pp.303-319.
    9. HCM (2011), Highway Capacity Manual in Taiwan, Chinese Institute of Transportation, Taiwan.
    10. Hu, T.Y., Chen, L. W., Hung, P.H., Huang, Y.K. and Chiang, M.L. (2005), A New Simulation-Assignment Model DynaTAIWAN for Mixed Traffic Flows, Proceedings of the 12th World Congress on Intelligent Transportation Systems, San Francisco, U.S..
    11. Kang, B. X., Chen, C. F. and Wu, j. h. (1993), A Feasibility Study of HOV facilities on the Taipei-Taoyuan of Sun Yat-Sen Freeway, Chinese Institute of Transportation, Taiwan.
    12. Lin, F. F. and Wang M. H. (1997), The Freeway High-Occupancy-Vehicle (HOV) Control Strategy Study, Chinese Institute of Transportation, Taiwan.
    13. Liu, X., Zhang, G., Wu, Y. J. and Wang, Y. (2011), “Measuring the Quality of Service for High Occupancy Toll Lanes Operations,” Procedia Social and Behavioral Sciences, Vol. 16, pp. 15-25.
    14. Menendez, M. and Daganzo, C. F. (2007), “Effects of HOV lanes on freeway bottlenecks,” Transportation Research Part B, Vol. 41, pp.809-822.
    15. Naga, R. P. (2007), A Mathematical Model for Evaluating the Conversion of High Occupancy Vehicle Lane to High Occupancy/ Toll Lane, Unpublished master Dissertation, University of California, Davis.
    16. Papageorgiou, M., Hadj-Salem, H. and Middelham, F. (1997), “ALINEA Local Ramp Metering: Summary of Field Result,” Transportation Research Record, Vol. 1603, pp.90-98.
    17. Taiwan Area National Freeway Bureau. (n.d.). The Network of the Northern Area. Retrieved from: http://www.freeway.gov.tw/
    18. Wu, T. Y. (2010), A Study on Intelligent Corridor Management Model, Master dissertation, Department of Transportation and Communication Management Science, National Cheng Kung University, Taiwan, ROC.
    19. Transportation Bureau, Kaohsiung City Government (2009), “The report of survey of the travel characteristics of Kaohsiung metropolitan area.”

    無法下載圖示 校內:2018-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE