| 研究生: |
陳逸琪 Chen, Yi-Chi |
|---|---|
| 論文名稱: |
前胸腺素在肺氣腫中調控miR-223的角色探討 The Role of Prothymosin α in the Regulation of miR-223 Expression in Emphysema |
| 指導教授: |
吳昭良
Wu, Chao-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 肺氣腫 、前胸腺素 、組蛋白去乙醯化酶 2 、miR-223 |
| 外文關鍵詞: | emphysema, ProT, miR-223, HDAC2 |
| 相關次數: | 點閱:76 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺氣腫 (Emphysema) 是慢性阻塞性肺疾病 (Chronic Obstructive Pulmonary Disease, COPD) 的主要亞型之一,其病理特徵為肺泡異常擴張、肺泡壁瓦解、喪失肺臟彈性等,最後導致呼吸系統失能。臨床研究發現,病人肺臟的組蛋白去乙醯化酶 2 (histone deacetylase 2, HDAC2) 之表現量及活性有明顯的下降,並且與病情的嚴重程度呈現負相關,但造成 HDAC2 表現量減少的機制仍不清楚。越來越多的研究指出表觀遺傳學 (epigenetics) 與疾病的致病機轉有很大的關係,例如組蛋白乙醯化、DNA 甲基化、訊息核醣核酸的穩定度以及蛋白質的轉譯後修飾。MicroRNA (miRNA) 是一種非編碼的微小 RNA ,可與訊息核醣核酸結合、進而影響訊息核醣核酸之穩定度與功能。文獻報導指出,在肺氣腫檢體中會偵測到高表現量的 MiRNA-223 (miR-223),我們進一步利用生物資訊軟體分析 miR-223 的標定核酸序列,結果發現 miR-223 可以和 HDAC2 的訊息核醣核酸結合,因此我們假設肺氣腫藉由 miR-223 的調控使 HDAC2 表現量下降。前胸腺素 (Prothymosin α, ProT) 是一種酸性核蛋白,參與調節細胞中的許多生理功能,包括染色質重組、細胞增生、免疫與氧化壓力等。前胸腺素過量表現的基因轉殖小鼠會產生自發性的肺氣腫,且實驗證實其 HDAC2 表現量下降,與臨床研究結果相吻合,同時也暗示前胸腺素過量表現可能會導致 miR-223 表現量升高。因此本論文主要在探討前胸腺素、 miR-223 與 HDAC2 之間的關係,藉由此研究提出在臨床上,肺氣腫病患之 HDAC2 下降的可能原因。在細胞實驗中,我們發現前胸腺素過量表現可以透過 NF-κB 的調控,導致 miR-223 表現上升,進而讓 HDAC2 表現降低;另外動物實驗中,前胸腺素過量表現的轉殖肺臟有同樣的現象。最後我們將臨床肺氣腫檢體,利用免疫染色以及原位核酸雜合技術 (in situ hybridization),觀察前胸腺素、HDAC2 和 miR-223 的表現,結果亦與細胞實驗及動物實驗吻合。本論文研究之重要性在於提出了肺氣腫病患之 HDAC2 表現量下降的可能原因。
Emphysema, a major subtype of chronic obstructive pulmonary disease (COPD), results from histone deacetylase 2 (HDAC2) dysfunction and inflammatory responses. However, the underlying mechanism is still unclear. We have previously demonstrated that the expression of HDAC2 is decreased in prothymosin α (ProT) transgenic mice, which exhibit an emphysema-like phenotype. Moreover, microarray data show that expression of miR-223 is increased in ProT transgenic mice, which is consistent with clinical reports. Bioinformatic prediction revealed that HDAC2 mRNA may contain miR-223 target sequences. Here, we proposed that ProT may contribute to the pathogenesis of emphysema by inhibiting HDAC2 expression through upregulating miR-223 expression. We show that miR-223 expression was elevated in ProT transgenic mice and patients with emphysema. HDAC2 expression was decreased in miR-223-overexpressing A549 cells. ProT overexpression decreased HDAC2 expression, whereas treatment with lentiviral vectors expressing the miR-223 target sequence (miR-223 sponge) abrogated the downregulation of HDAC2 expression in ProT-overexpressing cells. Notably, suppression of miR-223 activity reduces progression of emphysema in ProT transgenic mice. Taken together, our results provide a novel mechanism of emphysema pathogenesis whereby ProT inhibits HDAC2 expression through enhancing miR-223 expression.
Adcock, I.M., Ford, P., Ito, K., and Barnes, P.J. (2006). Epigenetics and airways disease. Respir Res 7, 21.
Barnes, P.J. (2006). Reduced histone deacetylase in COPD: clinical implications. Chest 129, 151-155.
Barnes, P.J., Shapiro, S.D., and Pauwels, R.A. (2003). Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 22, 672-688.
Boutten, A., Goven, D., Boczkowski, J., and Bonay, M. (2010). Oxidative stress targets in pulmonary emphysema: focus on the Nrf2 pathway. Expert Opin Ther Targets 14, 329-346.
Chen, C.Z., Li, L., Lodish, H.F., and Bartel, D.P. (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83-86.
Chen Y., Hanaoka M., Droma Y., Chen P., Voelkel N.F., and Kubo K. (2010). Endothelin-1 receptor antagonists prevent the development of pulmonary emphysema in rats. Eur Respir J 35, 904-912.
Chung, K.F. (2001). Cytokines in chronic obstructive pulmonary disease. Eur Respir J Suppl 34, 50s-59s.
Crim, C., Calverley, P.M., Anderson, J.A., Celli, B., Ferguson, G.T., Jenkins, C., Jones, P.W., Willits, L.R., Yates, J.C., and Vestbo, J. (2009). Pneumonia risk in COPD patients receiving inhaled corticosteroids alone or in combination: TORCH study results. Eur Respir J 34, 641-647.
de Ruijter, A.J., van Gennip, A.H., Caron, H.N., Kemp, S., and van Kuilenburg, A.B. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370, 737-749.
Dorhoi, A., Iannaccone, M., Farinacci, M., Fae, K.C., Schreiber, J., Moura-Alves, P., Nouailles, G., Mollenkopf, H.J., Oberbeck-Muller, D., Jorg, S., et al. (2013). MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J Clin Invest 123, 4836-4848.
Eschenfeldt, W.H., and Berger, S.L. (1986). The human prothymosin alpha gene is polymorphic and induced upon growth stimulation: evidence using a cloned cDNA. Proc Natl Acad Sci U S A 83, 9403-9407.
Evstafieva, A.G., Belov, G.A., Rubtsov, Y.P., Kalkum, M., Joseph, B., Chichkova, N.V., Sukhacheva, E.A., Bogdanov, A.A., Pettersson, R.F., Agol, V.I., et al. (2003). Apoptosis-related fragmentation, translocation, and properties of human prothymosin alpha. Exp Cell Res 284, 211-223.
Ezzie, M.E., Crawford, M., Cho, J.H., Orellana, R., Zhang, S., Gelinas, R., Batte, K., Yu, L., Nuovo, G., Galas, D., et al. (2012). Gene expression networks in COPD: microRNA and mRNA regulation. Thorax 67, 122-131.
Falk, J.A., Kadiev, S., Criner, G.J., Scharf, S.M., Minai, O.A., and Diaz, P. (2008). Cardiac disease in chronic obstructive pulmonary disease. Proc Am Thorac Soc 5, 543-548.
Fujita, Y., Takeshita, F., Kuwano, K., and Ochiya, T. (2013). RNAi Therapeutic Platforms for Lung Diseases. Pharmaceuticals (Basel) 6, 223-250.
Fulci, V., Scappucci, G., Sebastiani, G.D., Giannitti, C., Franceschini, D., Meloni, F., Colombo, T., Citarella, F., Barnaba, V., Minisola, G., et al. (2010). miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Hum Immunol 71, 206-211.
Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D.L., Fire, A., Ruvkun, G., and Mello, C.C. (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23-34.
Haneklaus, M., Gerlic, M., O'Neill, L.A., and Masters, S.L. (2013). miR-223: infection, inflammation and cancer. J Intern Med 274, 215-226.
Hanrahan, J.P., Tager, I.B., Segal, M.R., Tosteson, T.D., Castile, R.G., Van Vunakis, H., Weiss, S.T., and Speizer, F.E. (1992). The Effect of Maternal Smoking during Pregnancy on Early Infant Lung Function. American Review of Respiratory Disease 145, 1129-1135.
Haritos, A.A., Goodall, G.J., and Horecker, B.L. (1984). Prothymosin alpha: isolation and properties of the major immunoreactive form of thymosin alpha 1 in rat thymus. Proc Natl Acad Sci U S A 81, 1008-1011.
Ioannou, K., Samara, P., Livaniou, E., Derhovanessian, E., and Tsitsilonis, O.E. (2012). Prothymosin alpha: a ubiquitous polypeptide with potential use in cancer diagnosis and therapy. Cancer Immunol Immunother 61, 599-614.
Johnnidis, J.B., Harris, M.H., Wheeler, R.T., Stehling-Sun, S., Lam, M.H., Kirak, O., Brummelkamp, T.R., Fleming, M.D., and Camargo, F.D. (2008). Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451, 1125-1129.
Kabesch, M., and Adcock, I.M. (2012). Epigenetics in asthma and COPD. Biochimie 94, 2231-2241.
Karetsou, Z., Kretsovali, A., Murphy, C., Tsolas, O., and Papamarcaki, T. (2002). Prothymosin alpha interacts with the CREB-binding protein and potentiates transcription. EMBO Rep 3, 361-366.
Karetsou, Z., Sandaltzopoulos, R., Frangou-Lazaridis, M., Lai, C.Y., Tsolas, O., Becker, P.B., and Papamarcaki, T. (1998). Prothymosin alpha modulates the interaction of histone H1 with chromatin. Nucleic Acids Res 26, 3111-3118.
Karrasch, S., Holz, O., and Jorres, R.A. (2008). Aging and induced senescence as factors in the pathogenesis of lung emphysema. Respir Med 102, 1215-1230.
Kumar, V., Palermo, R., Talora, C., Campese, A.F., Checquolo, S., Bellavia, D., Tottone, L., Testa, G., Miele, E., Indraccolo, S., et al. (2014). Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia. Leukemia.
Lee, J., Li, Z., Brower-Sinning, R., and John, B. (2007). Regulatory circuit of human microRNA biogenesis. PLoS Comput Biol 3, e67.
Lim, S., Roche, N., Oliver, B.G., Mattos, W., Barnes, P.J., and Chung, K.F. (2000). Balance of matrix metalloprotease-9 and tissue inhibitor of metalloprotease-1 from alveolar macrophages in cigarette smokers. Regulation by interleukin-10. Am J Respir Crit Care Med 162, 1355-1360.
Makarova, T., Grebenshikov, N., Egorov, C., Vartapetian, A., and Bogdanov, A. (1989). Prothymosin alpha is an evolutionary conserved protein covalently linked to a small RNA. FEBS Lett 257, 247-250.
Mannino, D.M., and Buist, A.S. (2007). Global burden of COPD: risk factors, prevalence, and future trends. Lancet 370, 765-773.
Maritz, G.S. (1997). Maternal nicotine exposure induces microscopic emphysema in neonatal rat lung. Pathophysiology 4, 1-7.
Martinez, F.J., Curtis, J.L., Sciurba, F., Mumford, J., Giardino, N.D., Weinmann, G., Kazerooni, E., Murray, S., Criner, G.J., Sin, D.D., et al. (2007). Sex differences in severe pulmonary emphysema. Am J Respir Crit Care Med 176, 243-252.
Matys, V., Kel-Margoulis, O.V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., Reuter, I., Chekmenev, D., Krull, M., Hornischer, K., et al. (2006). TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34, D108-110.
Moschos, S.A., Williams, A.E., Perry, M.M., Birrell, M.A., Belvisi, M.G., and Lindsay, M.A. (2007). Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 8, 240.
Mosoian, A. (2011). Intracellular and extracellular cytokine-like functions of prothymosin alpha: implications for the development of immunotherapies. Future Med Chem 3, 1199-1208.
Noureddine, H., Gary-Bobo, G., Alifano, M., Marcos, E., Saker, M., Vienney, N., Amsellem, V., Maitre, B., Chaouat, A., Chouaid, C., et al. (2011). Pulmonary artery smooth muscle cell senescence is a pathogenic mechanism for pulmonary hypertension in chronic lung disease. Circ Res 109, 543-553.
Schaefer, J.S., Montufar-Solis, D., Vigneswaran, N., and Klein, J.R. (2011). Selective upregulation of microRNA expression in peripheral blood leukocytes in IL-10-/- mice precedes expression in the colon. J Immunol 187, 5834-5841.
Schreiber, J., Jenner, R.G., Murray, H.L., Gerber, G.K., Gifford, D.K., and Young, R.A. (2006). Coordinated binding of NF-kappaB family members in the response of human cells to lipopolysaccharide. Proc Natl Acad Sci U S A 103, 5899-5904.
Shapiro, S.D. (2000). Evolving concepts in the pathogenesis of chronic obstructive pulmonary disease. Clin Chest Med 21, 621-632.
Spira, A., Beane, J., Pinto-Plata, V., Kadar, A., Liu, G., Shah, V., Celli, B., and Brody, J.S. (2004). Gene expression profiling of human lung tissue from smokers with severe emphysema. Am J Respir Cell Mol Biol 31, 601-610.
Su, B.H., Tseng, Y.L., Shieh, G.S., Chen, Y.C., Shiang, Y.C., Wu, P., Li, K.J., Yen, T.H., Shiau, A.L., and Wu, C.L. (2013). Prothymosin alpha overexpression contributes to the development of pulmonary emphysema. Nat Commun 4, 1906.
Vian, L., Di Carlo, M., Pelosi, E., Fazi, F., Santoro, S., Cerio, A.M., Boe, A., Rotilio, V., Billi, M., Racanicchi, S., et al. (2014). Transcriptional fine-tuning of microRNA-223 levels directs lineage choice of human hematopoietic progenitors. Cell Death Differ 21, 290-301.
Wan, E.S., and Silverman, E.K. (2009). Genetics of COPD and emphysema. Chest 136, 859-866.
Yao, H., and Rahman, I. (2012). Role of histone deacetylase 2 in epigenetics and cellular senescence: implications in lung inflammaging and COPD. Am J Physiol Lung Cell Mol Physiol 303, L557-566.
校內:2024-12-31公開