簡易檢索 / 詳目顯示

研究生: 吳鴻昌
Wu, Hung-Chang
論文名稱: PI3K/mTOR雙重抑制藥物NVP-BEZ235對野生型上皮生長因子受體的非小細胞肺癌細胞之效用
The anti-cancer effect of the dual PI3K/mTOR inhibitor, NVP-BEZ235, on non-small cell lung cancer harboring wild-type EGFR
指導教授: 蘇五洲
Su, Wu-Chou
洪澤民
Hong, Tse-Ming
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 56
中文關鍵詞: 肺癌野生型上皮生長因子受體野生型PI3K/AKT/mTOR
外文關鍵詞: lung cancer, wild-type EGFR, PI3K/AKT/mTOR
相關次數: 點閱:136下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 了解上皮生長因子受體基因突變在肺癌的角色協助我們正確使用標靶藥物(像gefitinib或erlotinib)。這些藥物用來治療非小細胞肺癌的病人獲得極佳的治療成效及較化學藥物治療少的副作用。但是我們對於野生型上皮生長因子受體的非小細胞肺癌病人的治療除了化學藥物以外,並沒有有效標靶藥物來治療這一族群。因此新標靶藥物的開發及有效治療是被高度期待的。細胞內(Phosphatidylinositide 3-kinases /protein kinase B-AKT/ mammalian target of rapamycin; PI3K/AKT/ mTOR)訊息傳導在多種不同癌症都已證實其高度活躍以及它對腫瘤生成的重要性。我們發現新的PI3K/AKT/ mTOR訊息傳導雙重抑制的標靶藥物-NVP-BEZ235-對野生型上皮生長因子受體的肺癌細胞有比gefitinib更低的IC50。我們在肺癌的細胞株上測試BEZ235的效果及尋找其背後可能的機轉。我們發現BEZ235對所選的肺癌細胞有效,進一步造成cyclinD1/D3的下降而造成細胞生長停滯在G1期;我們也發現BEZ235對突變型上皮生長因子受體的肺癌細胞也有抑制生長的效果而進一步探討原因發現也是造成cyclinD1/D3的下降。再來我們用BEZ235與gefitinib組合治療在同時在EGFR上有L858R及T790M突變的H1975可成功抑制PI3K/mTOR的訊息。用來預測BEZ235效果的指標,在突變型上皮生長因子受體的肺癌細胞是內生性p-EGFR不強而p-AKT/p-S6的表現較強的,NVP-BEZ235的效果會比較好; 但是在野生型的肺癌細胞如果basal p-4EBP1較強的細胞, NVP-BEZ235的效果反而會比較差。雙重抑制藥物BEZ235不論在突變型或野生型都可能透過減少cyclinD1/D3而達成抑制肺癌細胞生長,至於進一步在動物或人類上的效果則有待後續的研究解答。

    Despite of great advances in understanding the role of EGFR mutation in non-small cell lung cancer (NSCLC) and the corresponding target therapy, like gefitinib and erlotinib, we still have no effective and less toxic therapy for patients with NSCLC with wild-type EGFR. Activation of phosphoinositide 3-kinase (PI3K)/AKT/ mammalian target of rapamycin inhibitor (mTOR) pathway is a potential target which is highly expressed in many kinds of solid tumors. A novel dual inhibitor, NVP-BEZ235, has been developed, showing good efficacy in blocking the pathway and an outstanding therapeutic effect in cancer growth inhibition. In this study, we investigate the efficacy of NVP-BEZ235 for inhibition of growth in EGFR-wild type NSCLC and the change of background signaling pathway. We find BEZ235 is effective to both of WT-EGFR NSCLC and MT-EGFR NSCLC cell lines, and the decreased cyclinD1/D3 level may cause cancer cells arrested in G1 phase. Besides that, as combining with gefitinib, BEZ235 could suppress signaling of PI3K/mTOR pathway from H1975 harboring L858R and T790M and may help overcome gefitinib-resistance. About biomarkders, we suggest Basal level of p-AKT/p-S6 may predict BEZ235 response in MT-EGFR, but the level of p-4EBP1 may reversely predict the efficacy of BEZ235 in WT-EGFR lung cancer cell lines. Further studies were needed for the evaluation of efficacy of BEZ235 in vivo.

    中文摘要 1 Abstract 2 誌謝 3 縮寫指引 4 目錄 5 1 背景與研究目標 8 1.1 肺癌(Lung cancer) 8 1.2 野生型上皮生長因子受體的非小細胞肺癌 9 1.3 磷脂酰肌醇激酶/蛋白激酶B/哺乳動物雷帕霉素靶蛋白( PI3K/AKT/ mTOR) 10 1.4 NVP-BEZ235 11 1.5 EGFR-TKI的抗藥性 12 1.6 研究目標(specific aims) 13 2 實驗方法 15 2.1 細胞株 15 2.2 細胞培養 15 2.3 NVP-BEZ235配製 16 2.4 生長抑制濃度試驗 16 2.5 生長試驗 17 2.6 西方墨點法(Western blotting) - 硫酸十二酯鈉聚丙烯醯胺凝膠電泳法(sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE) 17 2.7 細胞週期分析 22 2.8 移除NVP-BEZ235生長試驗 22 3 實驗結果 23 3.1 NVP-BEZ235對正常細胞的生長抑制 23 3.2 NVP-BEZ235對野生型上皮生長因子受體的非小細胞肺癌細胞生長的影響 23 3.3 分析NVP-BEZ235對野生型上皮生長因子受體非小細胞肺癌細胞的訊息變化 24 3.4 分析NVP-BEZ235對野生型上皮生長因子受體非小細胞肺癌細胞株的細胞週期 26 3.5 研究NVP-BEZ235處理後的細胞移除NVP-BEZ235對細胞生長的影響 27 3.6 NVP-BEZ235對mutant-type EGFR的非小細胞肺癌細胞生長的影響 27 3.7 分析NVP-BEZ235對突變型上皮生長因子受體非小細胞肺癌細胞的訊息變化 29 3.8 分析合併NVP-BEZ235和gefitinib對突變型上皮生長因子受體非小細胞肺癌細胞的訊息變化 30 4 討論 32 5 參考文獻 36 表目錄 42 Table 1 細胞株資訊及特性 42 Table 2 NVP-BEZ235藥物在野生型上皮生長因子受體非小細胞肺癌細胞的IC50 43 Table 3 NVP-BEZ235藥物在突變型上皮生長因子受體非小細胞肺癌細胞的IC50 44 圖目錄 45 Figure 1 NVP-BEZ235對正常人類纖維芽細胞的效果 45 Figure 2 NVP-BEZ235藥物在野生型上皮生長因子受體非小細胞肺癌細胞的效果 46 Figure 3 NVP-BEZ235對野生型上皮生長因子受體非小細胞肺癌細胞的生長抑制 47 Figure 4 NVP-BEZ235在野生型上皮生長因子受體非小細胞肺癌細胞對PI3K及mTOR下游訊息的抑制 48 Figure 5 NVP-BEZ235在野生型上皮生長因子受體非小細胞肺癌細胞的訊息改變 49 Figure 6 NVP-BEZ235造成野生型上皮生長因子受體非小細胞肺癌細胞株細胞週期停留在G1期 50 Figure 7 對已用NVP-BEZ235處理過的野生型上皮生長因子受體非小細胞肺癌細胞移除NVP-BEZ235對細胞生長的影響 51 Figure 8 NVP-BEZ235藥物在突變型上皮生長因子受體非小細胞肺癌細胞的效果 52 Figure 9 NVP-BEZ235對突變型上皮生長因子受體非小細胞肺癌細胞的生長抑制 53 Figure 10 NVP-BEZ235在突變型上皮生長因子受體非小細胞肺癌細胞對PI3K及mTOR下游訊息的抑制 54 Figure 11 NVP-BEZ235在突變型上皮生長因子受體非小細胞肺癌細胞的訊息改變 55 Figure 12 NVP-BEZ235合併gefitinib在突變型上皮生長因子受體非小細胞肺癌細胞H1975的訊息改變 56

    Baselga, J., Rischin, D., Ranson, M., Calvert, H., Raymond, E., Kieback, D. G., Albanell, J. (2002). Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol, 20(21), 4292-4302.
    Baumann, P., Mandl-Weber, S., Oduncu, F., & Schmidmaier, R. (2009). The novel orally bioavailable inhibitor of phosphoinositol-3-kinase and mammalian target of rapamycin, NVP-BEZ235, inhibits growth and proliferation in multiple myeloma. Exp Cell Res, 315(3), 485-497. doi: 10.1016/j.yexcr.2008.11.007
    Bhende, P. M., Park, S. I., Lim, M. S., Dittmer, D. P., & Damania, B. (2010). The dual PI3K/mTOR inhibitor, NVP-BEZ235, is efficacious against follicular lymphoma. Leukemia, 24(10), 1781-1784. doi: 10.1038/leu.2010.154
    Brachmann, S. M., Hofmann, I., Schnell, C., Fritsch, C., Wee, S., Lane, H., Maira, S. M. (2009). Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci U S A, 106(52), 22299-22304. doi: 10.1073/pnas.0905152106
    Breuleux, M., Klopfenstein, M., Stephan, C., Doughty, C. A., Barys, L., Maira, S. M., Lane, H. A. (2009). Increased AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3K/mTOR inhibition. Mol Cancer Ther, 8(4), 742-753. doi: 10.1158/1535-7163.MCT-08-0668
    Calvo, E., & Baselga, J. (2006). Ethnic differences in response to epidermal growth factor receptor tyrosine kinase inhibitors. J Clin Oncol, 24(14), 2158-2163. doi: 10.1200/JCO.2006.06.5961
    Cao, P., Maira, S. M., Garcia-Echeverria, C., & Hedley, D. W. (2009). Activity of a novel, dual PI3-kinase/mTor inhibitor NVP-BEZ235 against primary human pancreatic cancers grown as orthotopic xenografts. Br J Cancer, 100(8), 1267-1276. doi: 10.1038/sj.bjc.6604995
    Chiarini, F., Grimaldi, C., Ricci, F., Tazzari, P. L., Evangelisti, C., Ognibene, A., Martelli, A. M. (2010). Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia. Cancer Res, 70(20), 8097-8107. doi: 10.1158/0008-5472.CAN-10-1814
    Cho, D. C., Cohen, M. B., Panka, D. J., Collins, M., Ghebremichael, M., Atkins, M. B., Mier, J. W. (2010). The efficacy of the novel dual PI3-kinase/mTOR inhibitor NVP-BEZ235 compared with rapamycin in renal cell carcinoma. Clin Cancer Res, 16(14), 3628-3638. doi: 10.1158/1078-0432.CCR-09-3022
    Choe, G., Horvath, S., Cloughesy, T. F., Crosby, K., Seligson, D., Palotie, A., Mischel, P. S. (2003). Analysis of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res, 63(11), 2742-2746.
    Dai, D. L., Martinka, M., & Li, G. (2005). Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. J Clin Oncol, 23(7), 1473-1482. doi: 10.1200/JCO.2005.07.168
    Donev, I. S., Wang, W., Yamada, T., Li, Q., Takeuchi, S., Matsumoto, K.,Yano, S. (2011). Transient PI3K inhibition induces apoptosis and overcomes HGF-mediated resistance to EGFR-TKIs in EGFR mutant lung cancer. Clin Cancer Res, 17(8), 2260-2269. doi: 10.1158/1078-0432.CCR-10-1993
    Engelman, J. A., & Cantley, L. C. (2006). The role of the ErbB family members in non-small cell lung cancers sensitive to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res, 12(14 Pt 2), 4372s-4376s. doi: 10.1158/1078-0432.CCR-06-0795
    Engelman, J. A., Chen, L., Tan, X., Crosby, K., Guimaraes, A. R., Upadhyay, R., Wong, K. K. (2008). Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med, 14(12), 1351-1356. doi: 10.1038/nm.1890
    Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., Janne, P. A. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 316(5827), 1039-1043. doi: 10.1126/science.1141478
    Ettinger, D. S., Akerley, W., Borghaei, H., Chang, A. C., Cheney, R. T., Chirieac, L. R., Hughes, M. (2013). Non-Small Cell Lung Cancer, Version 2.2013. J Natl Compr Canc Netw, 11(6), 645-653.
    Faber, A. C., Li, D., Song, Y., Liang, M. C., Yeap, B. Y., Bronson, R. T., Engelman, J. A. (2009). Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition. Proc Natl Acad Sci U S A, 106(46), 19503-19508. doi: 10.1073/pnas.0905056106
    Fan, Q. W., & Weiss, W. A. (2011). Autophagy and Akt promote survival in glioma. Autophagy, 7(5), 536-538.
    Fernandes-Alnemri, T., Litwack, G., & Alnemri, E. S. (1994). CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem, 269(49), 30761-30764.
    Group, Nsclc Meta-Analyses Collaborative. (2008). Chemotherapy in addition to supportive care improves survival in advanced non-small-cell lung cancer: a systematic review and meta-analysis of individual patient data from 16 randomized controlled trials. J Clin Oncol, 26(28), 4617-4625. doi: 10.1200/JCO.2008.17.7162
    Guertin, D. A., Stevens, D. M., Saitoh, M., Kinkel, S., Crosby, K., Sheen, J. H., Sabatini, D. M. (2009). mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell, 15(2), 148-159. doi: 10.1016/j.ccr.2008.12.017
    Guix, M., Faber, A. C., Wang, S. E., Olivares, M. G., Song, Y., Qu, S., Engelman, J. A. (2008). Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest, 118(7), 2609-2619. doi: 10.1172/JCI34588
    Herrera, V. A., Zeindl-Eberhart, E., Jung, A., Huber, R. M., & Bergner, A. (2011). The dual PI3K/mTOR inhibitor BEZ235 is effective in lung cancer cell lines. Anticancer Res, 31(3), 849-854.
    Hsieh, A. C., Costa, M., Zollo, O., Davis, C., Feldman, M. E., Testa, J. R., Ruggero, D. (2010). Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell, 17(3), 249-261. doi: 10.1016/j.ccr.2010.01.021
    Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 19(21), 5720-5728. doi: 10.1093/emboj/19.21.5720
    Kobayashi, S., Boggon, T. J., Dayaram, T., Janne, P. A., Kocher, O., Meyerson, M., Halmos, B. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med, 352(8), 786-792. doi: 10.1056/NEJMoa044238
    Kokubo, Y., Gemma, A., Noro, R., Seike, M., Kataoka, K., Matsuda, K., Kudoh, S. (2005). Reduction of PTEN protein and loss of epidermal growth factor receptor gene mutation in lung cancer with natural resistance to gefitinib (IRESSA). Br J Cancer, 92(9), 1711-1719. doi: 10.1038/sj.bjc.6602559
    Kreisberg, J. I., Malik, S. N., Prihoda, T. J., Bedolla, R. G., Troyer, D. A., Kreisberg, S., & Ghosh, P. M. (2004). Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Res, 64(15), 5232-5236. doi: 10.1158/0008-5472.CAN-04-0272
    Leung, E., Kim, J. E., Rewcastle, G. W., Finlay, G. J., & Baguley, B. C. (2011). Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells. Cancer Biol Ther, 11(11), 938-946.
    Li, Y., Xu, L., Cai, A., Li, L., & Zhong, X. (2012). [The effect of autophagy on the radioresistance of human adenocarcinoma A549 cell in hypoxia condition]. Zhongguo Fei Ai Za Zhi, 15(11), 638-641. doi: 10.3779/j.issn.1009-3419.2012.11.06
    Liu, F., Liu, D., Yang, Y., & Zhao, S. (2013). Effect of autophagy inhibition on chemotherapy-induced apoptosis in A549 lung cancer cells. Oncol Lett, 5(4), 1261-1265. doi: 10.3892/ol.2013.1154
    Liu, T. J., Koul, D., LaFortune, T., Tiao, N., Shen, R. J., Maira, S. M., Yung, W. K. (2009). NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol Cancer Ther, 8(8), 2204-2210. doi: 10.1158/1535-7163.MCT-09-0160
    Masuda, M., Shimomura, M., Kobayashi, K., Kojima, S., & Nakatsura, T. (2011). Growth inhibition by NVP-BEZ235, a dual PI3K/mTOR inhibitor, in hepatocellular carcinoma cell lines. Oncol Rep, 26(5), 1273-1279. doi: 10.3892/or.2011.1370
    Mok, T. S., Wu, Y. L., Thongprasert, S., Yang, C. H., Chu, D. T., Saijo, N., Fukuoka, M. (2009). Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med, 361(10), 947-957. doi: 10.1056/NEJMoa0810699
    Nam, S. Y., Lee, H. S., Jung, G. A., Choi, J., Cho, S. J., Kim, M. K., Lee, B. L. (2003). Akt/PKB activation in gastric carcinomas correlates with clinicopathologic variables and prognosis. APMIS, 111(12), 1105-1113.
    Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M. et al. (1995). Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature, 376(6535), 37-43. doi: 10.1038/376037a0
    O'Reilly, T., & McSheehy, P. M. (2010). Biomarker Development for the Clinical Activity of the mTOR Inhibitor Everolimus (RAD001): Processes, Limitations, and Further Proposals. Transl Oncol, 3(2), 65-79.
    Oliver, F. J., de la Rubia, G., Rolli, V., Ruiz-Ruiz, M. C., de Murcia, G., & Murcia, J. M. (1998). Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem, 273(50), 33533-33539.
    Sacco, A., Roccaro, A., & Ghobrial, I. M. (2010). Role of dual PI3/Akt and mTOR inhibition in Waldenstrom's Macroglobulinemia. Oncotarget, 1(7), 578-582.
    Shaw, A. T., Kim, D. W., Nakagawa, K., Seto, T., Crino, L., Ahn, M. J., Janne, P. A. (2013). Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med, 368(25), 2385-2394. doi: 10.1056/NEJMoa1214886
    She, Q. B., Solit, D., Basso, A., & Moasser, M. M. (2003). Resistance to gefitinib in PTEN-null HER-overexpressing tumor cells can be overcome through restoration of PTEN function or pharmacologic modulation of constitutive phosphatidylinositol 3'-kinase/Akt pathway signaling. Clin Cancer Res, 9(12), 4340-4346.
    Shoji, K., Oda, K., Kashiyama, T., Ikeda, Y., Nakagawa, S., Sone, K., Taketani, Y. (2012). Genotype-dependent efficacy of a dual PI3K/mTOR inhibitor, NVP-BEZ235, and an mTOR inhibitor, RAD001, in endometrial carcinomas. PLoS One, 7(5), e37431. doi: 10.1371/journal.pone.0037431
    Soda, M., Takada, S., Takeuchi, K., Choi, Y. L., Enomoto, M., Ueno, T., Mano, H. (2008). A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci U S A, 105(50), 19893-19897. doi: 10.1073/pnas.0805381105
    Tabernero, J., Rojo, F., Calvo, E., Burris, H., Judson, I., Hazell, K., Baselga, J. (2008). Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol, 26(10), 1603-1610. doi: 10.1200/JCO.2007.14.5482
    Terakawa, N., Kanamori, Y., & Yoshida, S. (2003). Loss of PTEN expression followed by Akt phosphorylation is a poor prognostic factor for patients with endometrial cancer. Endocr Relat Cancer, 10(2), 203-208.
    Tsao, M. S., Sakurada, A., Cutz, J. C., Zhu, C. Q., Kamel-Reid, S., Squire, J., Shepherd, F. A. (2005). Erlotinib in lung cancer - molecular and clinical predictors of outcome. N Engl J Med, 353(2), 133-144. doi: 10.1056/NEJMoa050736
    Uramoto, H., Iwata, T., Onitsuka, T., Shimokawa, H., Hanagiri, T., & Oyama, T. (2010). Epithelial-mesenchymal transition in EGFR-TKI acquired resistant lung adenocarcinoma. Anticancer Res, 30(7), 2513-2517.
    Wang, X., & Sun, S. Y. (2009). Enhancing mTOR-targeted cancer therapy. Expert Opin Ther Targets, 13(10), 1193-1203. doi: 10.1517/14728220903225008
    Xu, C. X., Li, Y., Yue, P., Owonikoko, T. K., Ramalingam, S. S., Khuri, F. R., & Sun, S. Y. (2011). The combination of RAD001 and NVP-BEZ235 exerts synergistic anticancer activity against non-small cell lung cancer in vitro and in vivo. PLoS One, 6(6), e20899. doi: 10.1371/journal.pone.0020899
    Yamamoto, H., Shigematsu, H., Nomura, M., Lockwood, W. W., Sato, M., Okumura, N., . . . Gazdar, A. F. (2008). PIK3CA mutations and copy number gains in human lung cancers. Cancer Res, 68(17), 6913-6921. doi: 10.1158/0008-5472.CAN-07-5084
    Yeh, C. T., Wu, A. T., Chang, P. M., Chen, K. Y., Yang, C. N., Yang, S. C., Huang, C. Y. (2012). Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am J Respir Crit Care Med, 186(11), 1180-1188. doi: 10.1164/rccm.201207-1180OC
    Yu, X. J., Han, Q. B., Wen, Z. S., Ma, L., Gao, J., & Zhou, G. B. (2012). Gambogenic acid induces G1 arrest via GSK3beta-dependent cyclin D1 degradation and triggers autophagy in lung cancer cells. Cancer Lett, 322(2), 185-194. doi: 10.1016/j.canlet.2012.03.004

    下載圖示 校內:2015-09-09公開
    校外:2018-09-09公開
    QR CODE