| 研究生: |
陳愷駿 Chen, Kai-Chun |
|---|---|
| 論文名稱: |
與設備無相關假設的驗證法:對系統特定性質包含信賴區間的認證 Device-independent certification of desirable properties with a confidence interval |
| 指導教授: |
梁永成
Liang, Yeong-Cherng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 量子非局域性 、貝爾測試 、與設備無相關 、假設檢定 |
| 外文關鍵詞: | quantum nonlocality, Bell test, device-independent, hypothesis testing |
| 相關次數: | 點閱:70 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在量子科技的發展中,如何刻畫測量設備或是量子態製備的方法是至關重要的。在傳統的途徑裡(例如:量子斷層掃描或量子過程掃描)往往是依靠真實實驗中不合適的假設去刻畫。雖然我們可以透過與設備無相關的途徑,做出最少且合適的假設,來克服上述的缺點;但是,迄今為止,多數透過此途徑被提出的方案,仍只適用於互相獨立的測量數據且機率分佈相同(即i.i.d.假設)的情況。在本文中,我們提供了一種與設備無相關的驗證法,此驗證法包含信賴區間且不依賴於i.i.d.假設。我們將介紹如何應用「以預測比率為基礎的協議」[46]和「以鞅為基礎的協議」[17],並且透過這兩種用於假設檢定的協議,來對量子態的數個特定性質進行驗證。在此驗證中,我們利用了明確的圖例去解釋這些方法在檢測量子態負性、維度和糾纏深度下界假設的有效性,並針對幾個特定負性的值去比較在不同試驗數目下不同協議的驗證效能。另外,在i.i.d.的假設下,我們還利用「置信增益率」的概念去比較當試驗數目趨近無窮大時不同協議的驗證效能。
In the development of quantum technologies, a reliable means for characterizing de-vices, be it a measurement device or a state-preparation device, is of crucial importance.A conventional approach based on, for example, quantum state tomography or process to-mography, however, relies on assumptions that are often not justifiable in a realistic exper-imental setting. While the device-independent approach to this problem does get aroundthe aforementioned shortcomings by making only minimal, justifiable assumptions, most ofthe theoretical proposals given to date only work in the very idealized setting where inde-pendent and identically distributed (i.i.d.) trials are assumed. Here, we give a solution todevice-independent certification by providing a confidence region and does not rely on thei.i.d. assumption. We describe how the prediction-based-ratio protocol [46] and martingale-based protocol [17] developed for hypothesis testing can be applied in the present context toachieve a device-independent certification of desirable properties with confidence interval.We provide explicit examples illustrating the efficacy of these methods based on the certifi-cation of a lower bound on the negativity, the dimension, and the entanglement depth of theunderlying system. For several negativity values, we compare the performance of differentprotocols of analysis with the number of trials. We also use the the notion of a confidencegain rate to compare the performance of different protocols in the asymptotic scenario withan infinite number of i.i.d. trials.
[1] A. Acín, T. Durt, N. Gisin, and J. I. Latorre. Quantum nonlocality in two three-levelsystems.Physical Review A, 65:052325, May 2002.
[2] A. Acín, N. Gisin, and L. Masanes. From Bell’s theorem to secure quantum key distri-bution.Physical Review Letters, 97:120405, Sep 2006.
[3] R. Arnon-Friedman, R. Renner, and T. Vidick. Simple and tight device-independentsecurity proofs.SIAM Journal on Computing, 48(1):181–225, Jan 2019.
[4] A. Aspect, J. Dalibard, and G. Roger. Experimental test of Bell’s inequalities usingtime-varying analyzers.Physical Review Letters, 49:1804–1807, Dec 1982.
[5] K. Azuma. Weighted sums of certain dependent random variables.Tohoku Mathemat-ical Journal, Second Series, 19(3):357–367, 1967.
[6] J.-D. Bancal, M. Navascués, V. Scarani, and et al. Physical characterization of quantumdevices from nonlocal correlations.Physical Review A, 91:022115, Feb 2015.
[7] J.-D. Bancal, L. Sheridan, and V. Scarani. More randomness from the same data.NewJournal of Physics, 16(3):033011, Mar 2014.
[8] J. Barrett, D. Collins, L. Hardy, A. Kent, and S. Popescu. Quantum nonlocality, Bellinequalities, and the memory loophole.Physical Review A, 66:042111, Oct 2002.
[9] J. S. Bell. On the einstein podolsky rosen paradox.Physics, 1:195–200, Nov 1964.
[10] C. Bernhard, B. Bessire, A. Montina, and et al. Non-locality of experimental qutritpairs.Journal of Physics A: Mathematical and Theoretical, 47(42):424013, Oct 2014.
[11] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner. Bell nonlocality.Reviews of Modern Physics, 86:419–478, Apr 2014.
[12] N. Brunner, S. Pironio, A. Acin, N. Gisin, A. A. Méthot, and V. Scarani. Testing thedimension of hilbert spaces.Physical Review Letters, 100:210503, May 2008.
[13] S.-L. Chen, C. Budroni, Y.-C. Liang, and Y.-N. Chen. Natural framework for device-independent quantification of quantum steerability, measurement incompatibility, andself-testing.Physical Review Letters, 116:240401, Jun 2016.
[14] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt. Proposed experiment to testlocal hidden-variable theories.Physical Review Letters, 23:880–884, Oct 1969.
[15] D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu. Bell inequalities for arbi-trarily high-dimensional systems.Physical Review Letters, 88:040404, Jan 2002.
[16] F. Dupuis, O. Fawzi, and R. Renner. Entropy accumulation.Communications in Math-ematical Physics, 379(3):867–913, Sep 2020.
[17] R. D. Gill. Accardi contra Bell (cum mundi): The impossible coupling.Lecture Notes-Monograph Series, 42:133–154, 2003.
[18] M. Giustina, M. A. M. Versteegh, S. Wengerowsky, and et al. Significant-loophole-freetest of Bell’s theorem with entangled photons.Physical Review Letters, 115:250401,Dec 2015.
[19] D. M. Greenberger, M. A. Horne, and A. Zeilinger. Going beyond Bell’s theorem.arXiv, 0712.0921, 1989.
[20] B. Hensen, H. Bernien, A. E. Dréau, and et al. Loophole-free bell-inequality violationusing electron spins separated by 1.3 kilometres.Nature, 526:682–686, Oct 2015.
[21] W. Hoeffding. Probability inequalities for sums of bounded random variables.Journalof the American Statistical Association, 58(301):13–30, 1963.
[22] E. Knill, Y. Zhang, and P. Bierhorst. Generation of quantum randomness by probabilityestimation with classical side information.Physical Review Research, 2(3), Sep 2020.
[23] S. Kullback and R. A. Leibler. On Information and Sufficiency.The Annals of Mathe-matical Statistics, 22(1):79 – 86, 1951.
[24] Y.-C. Liang and Y. Zhang. Bounding the plausibility of physical theories in a device-independent setting via hypothesis testing.Entropy, 21(2), 2019.
[25] P.-S. Lin, D. Rosset, Y. Zhang, J.-D. Bancal, and Y.-C. Liang. Device-independentpoint estimation from finite data and its application to device-independent propertyestimation.Physical Review A, 97:032309, Mar 2018.
[26] P.-S. Lin, T. Vértesi, and Y.-C. Liang. Naturally restricted subsets of nonsignalingcorrelations: typicality and convergence.arXiv, 2107.05646, Jul 2021.
[27] N. D. Mermin. Extreme quantum entanglement in a superposition of macroscopicallydistinct states.Physical Review Letters, 65:1838–1840, Oct 1990.
[28] T. Minka. lightspeed Matlab toolbox. https://github.com/tminka/lightspeed.
[29] T. Moroder, J.-D. Bancal, Y.-C. Liang, M. Hofmann, and O. Gühne.Device-independent entanglement quantification and related applications.Physical ReviewLetters, 111:030501, Jul 2013.
[30] T. Moroder, M. Kleinmann, P. Schindler, T. Monz, O. Gühne, and R. Blatt. Certifyingsystematic errors in quantum experiments.Physical Review Letters, 110:180401, Apr2013.
46REFERENCES
[31] M. Navascués, S. Pironio, and A. Acín. Bounding the set of quantum correlations.Physical Review Letters, 98:010401, Jan 2007.
[32] M. Navascués, S. Pironio, and A. Acín.A convergent hierarchy of semidefiniteprograms characterizing the set of quantum correlations.New Journal of Physics,10(7):073013, 2008.
[33] O. Nieto-Silleras, C. Bamps, J. Silman, and S. Pironio. Device-independent random-ness generation from several Bell estimators.New Journal of Physics, 20(2):023049,Feb 2018.
[34] S. Pironio, A. Acín, S. Massar, and et al. Random numbers certified by Bell’s theorem.Nature, 464:1021–1024, Apr 2010.
[35] S. Pironio and S. Massar. Security of practical private randomness generation.PhysicalReview A, 87:012336, Jan 2013.
[36] S. Popescu and D. Rohrlich. Quantum nonlocality as an axiom.Foundations of Physics,24(3):379–385, Mar 1994.
[37] D. Rosset, R. Ferretti-Schöbitz, J.-D. Bancal, N. Gisin, and Y.-C. Liang. Imperfectmeasurement settings: Implications for quantum state tomography and entanglementwitnesses.Physical Review A, 86:062325, Dec 2012.
[38] M. Rowe, D. Kielpinski, V. Meyer, and et al. Experimental violation of a Bell’s in-equality with efficient detection.Nature, 409:791–794, Feb 2001.
[39] S. Schwarz, B. Bessire, A. Stefanov, and Y.-C. Liang. Bipartite Bell inequalities withthree ternary-outcome measurements—from theory to experiments.New Journal ofPhysics, 18(3):035001, Feb 2016.
[40] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, and et al. Strong loophole-free test oflocal realism.Physical Review Letters, 115:250402, Dec 2015.
[41] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin. Violation of Bell inequalities by pho-tons more than 10 km apart.Physical Review Letters, 81:3563–3566, Oct 1998.
[42] S. J. van Enk and R. Blume-Kohout. When quantum tomography goes wrong: drift ofquantum sources and other errors.New Journal of Physics, 15(2):025024, Feb 2013.
[43] G. Vidal and R. F. Werner. Computable measure of entanglement.Physical Review A,65:032314, Feb 2002.
[44] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger. Violation of Bell’sinequality under strict einstein locality conditions.Physical Review Letters, 81:5039–5043, Dec 1998.
[45] Y. Zhang.Analysis of tests of local realism. ProQuest. PhD thesis, 2013.
REFERENCES47
[46] Y. Zhang, S. Glancy, and E. Knill. Asymptotically optimal data analysis for rejectinglocal realism.Physical Review A, 84:062118, Dec 2011.
[47] Y. Zhang, S. Glancy, and E. Knill. Efficient quantification of experimental evidenceagainst local realism.Physical Review A, 88:052119, Nov 2013.