簡易檢索 / 詳目顯示

研究生: 劉彥辰
Liu, Yen-Chen
論文名稱: 加勁邊坡上方基礎之耐震行為研究
Study on the Seismic Response of Foundations Placed on the Crest of the Reinforced Slope
指導教授: 黃景川
Huang, Ching-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 301
中文關鍵詞: 動態基礎承載力震動台試驗加勁邊坡偏心傾斜載重模型基礎地震加速度擬靜態分析能量指標
外文關鍵詞: Seismic bearing capacity, Shaking table test,, Strip footing, Slope, Load eccentricity, Load inclination, dynamic, Pseudo-static analysis,, Energy index
相關次數: 點閱:172下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用長150 mm,直徑1.96 mm之鋼針模擬二向度(Two-dimensional)均勻顆粒土壤,並加入加勁材製作高500 mm之加勁邊坡(β=30°)。在靜態試驗中,邊坡上方放置兩種不同形式(固定及旋轉式)之基礎,探討加勁與否對於邊坡承載力的變化,並以深基礎試驗結果加入修正因子試圖推導邊坡承載力的計算公式。在動態試驗中,將加勁邊坡模型與基礎置於震動台上,觀察在改變試驗條件(如赫茲數、加勁層數、加載重量、基礎位置與波數)下的承載力變化會是如何,並以三種改良地震波,探討邊坡在承受真實地震與規則之正弦波之動態行為差異,並將邊坡上方基礎之動態承載力行為反映於基礎承載力之設計與分析中。
    由靜態模型試驗可知: 一、在基礎的偏心、傾斜載重以及初始勁度的變化上,加勁邊坡都比不加勁邊坡還來的穩定。二、在加勁邊坡承載力比的計算公式中考慮Huang(2008b)的基礎後退修正係數是有其必要性,其推導結果也與試驗結果非常接近。三、修正後的沉陷量比計算結果與後退基礎加勁邊坡的實驗結果雖然相差甚遠,但也說明加勁邊坡在達極限承載力破壞前能容許的沉陷量變大許多。在動態模型試驗結果可知 : 一、邊坡頂部之加速度放大反應會隨著接近基礎自然頻率而越顯劇烈。二、同樣參考Whitman(1990)設計加速度值,加勁邊坡採用HPGA/g=3∙k_h,其得到的結果可以看出比不加勁邊坡還要安全許多。三、在動態加勁邊坡承載力比計算公式中加入地震修正係數,其結果與實驗值也非常接近。四、以能量觀點切入邊坡破壞之結果,發現相同加勁邊坡其所需破壞的能量皆一樣,且後退1B基礎與鄰近基礎在加勁效後的效果上極為接近。五、一般震動台試驗中所採用之逐漸增強正弦波加載,相對於隨機地震波有較為保守的現象。

    In the present study, bearing capacity of footings placed on reinforced slopes were investigated using reduce-scaled model tests. An idealized 2-D backfill consisting of uniform diameter steel rods was used as the test medium. The present study is divided into two parts: static and dynamic. The first part focuses on static bearing capacity and derivation formula for reinforced slopes. The second part focuses on the input wave characteristics on the dynamic bearing capacity and the stability of footings. The following conclusions were obtained:
    In static test:
    1.On the changes of load eccentricity, load inclination and initial stiffness, reinforced slope is more stable than unreinforced slope.
    2.The formula for bearing capacity ratio on reinforced slope is necessary to consider Huang and Kang(2008b) and the result is very close to test result.
    3.Although the formula for settlement ratio is far from test result on the setback 1B reinforced slope, that shows it can allow more settlement before ultimate bearing capacity failure.
    In dynamic test:
    1.On the top of the slope model, the acceleration amplification response varies with input wave frequencies.
    2.Refer to Whitman(1990), reinforced slope is much safer than unreinforced slope by using the empirical rule of amax /3 = kh•g (g: gravitational acceleration).
    3.Adding the earthquake correction factor to the calculation formula for dynamic reinforced slope bearing capacity ratio and the result is very close to test result.
    4.From the energy point of view, the result of the slope failure is found to be the same as the energy required for the same reinforced slope.
    5.The slope subjected to step-wise intensified sinusoidal waves are more conservative than that subjected to random waves.

    目錄 表目錄……………………………………………….…………………………….….……….… XIII 圖目錄…………………………………………………………………..….….…… XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容 1 第二章 文獻回顧 3 2.1 Terzaghi (1943)淺基礎承載力理論 3 2.2 Meyerhof (1963)極限承載力理論 5 2.3 Hansen (1970)承載力理論 7 2.4 Huang and Kang(2008a)承載力修正係數 11 2.5 Huang and Kang (2008b)基礎後退修正係數 12 2.6 深基礎效應與寬版機制效應Huang and Menq(1997) 15 2.6.1 沉陷量比SRfHuang and Menq(1997) 19 2.6.2勁度比RkHuang and Menq(1997) 20 2.7 Meyerhof (1957)邊坡承載力理論 22 2.8 Graham et al.(1988)邊坡承載力理論 23 2.9 Sarma and Chen (1995) 動態承載力理論 25 2.10 Zhu (2000) 動態承載力理論 28 2.11 Yamamoto (2010) 動態承載力理論 29 2.12 鋼針模型試驗 33 2.12.1 Huang et al. 鋼針模型擋土牆試驗 33 2.12.2 Huang et al. 鋼針直接剪力試驗 34 2.12.3 Huang et al. 鋼針內摩擦角ψ的選定過程 37 2.12.4 Huang et al. 鋼針模型靜態邊坡承載力試驗 39 2.12.5 林宜賢(2018) 鋼針模型邊坡動態承載力試驗 40 第三章 實驗裝置與介紹 41 3.1 鋼針模型 41 3.2 加勁材料 41 3.3 定位移加載試驗機 41 3.4 資料量測系統 42 3.5 定載重加載系統 46 第四章 研究方法與試驗說明 70 4.1 靜態兩層(四層)加勁邊坡承載力試驗(鄰近邊坡與後退基礎邊坡) 71 4.2 鋼針深基礎試驗(鄰近邊坡) 72 4.3 White noise test 72 4.4 動態邊坡承載力試驗 73 4.5 實驗條件與波形模擬結果 74 4.6 加勁邊坡計算公式之推導 76 4.6.1 水平砂土加勁地盤的理論公式 76 4.6.2 加勁邊坡BCRD的推導 77 4.6.3 加勁邊坡BCRs的檢核 79 4.6.4 加勁邊坡計算公式BCRR的推導 80 4.6.5 加勁邊坡沉陷量比SRf之計算公式推導 81 4.6.6 加勁邊坡勁度比Rk之計算公式推導 82 4.6.7 動態加勁邊坡承載力比BCRR之計算公式推導 83 第五章 模型試驗結果與分析 91 5.1 靜態極限承載力試驗 91 5.1.1 靜態極限承載力試驗結果 91 5.1.2 靜態承載力實驗破壞情況與破壞深度 94 5.1.3 正向應力分布圖 99 5.1.4 基礎承載力之傾斜載重 102 5.1.5 基礎承載力之偏心狀況 104 5.2 承載力因素分析 106 5.2.1 承載力傾斜載重的修正 107 5.2.2 承載力偏心載重之修正 108 5.2.3 後退基礎之修正 112 5.3 初始勁度與加勁力分佈 117 5.3.1 初始勁度(Initial Stffiness) 117 5.3.2 加勁力的分佈 120 5.4 加勁邊坡計算公式與加勁邊坡試驗之結果與分析 123 5.4.1 深基礎試驗與BCRD的修正 123 5.4.2 深基礎試驗與BCRs的檢核 126 5.4.3 修正後之計算值BCRR與靜態加勁邊坡實驗結果比較 128 5.4.4 沉陷量比分析(Settlement ratio)與加勁邊坡實驗結果比較 133 5.4.5 勁度比分析(Stiffness ratio)與加勁邊坡試驗結果比較 138 5.5 兩層加勁邊坡動態承載力實驗結果 144 5.5.1 兩層加勁邊坡與四層加勁邊坡的比較 144 5.5.2 White noise test 149 5.6 四層加勁邊坡動態承載力試驗結果與分析 152 5.6.1基礎穩定性情況 157 5.6.1.1 震動台加速度與沉陷量的關係 157 5.6.1.2 邊坡破壞深度與破壞過程之發展 162 5.6.1.3 加速度放大反應 (Acceleration Amplification) 167 5.6.2 基礎正向應力與剪應力反應 170 5.6.3 基礎承載力之傾斜載重 173 5.6.4 基礎承載力之偏心狀況 176 5.6.5 動態承載力因數分析 179 5.6.5.1 偏心、傾斜載重與後退基礎的修正結果 179 5.6.5.2 地震修正係數ηγe與水平加速度係數Kh的關係 183 5.6.6 動態承載力計算公式與動態試驗比較結果 189 5.6.7 放大係數Am、aRmS與Ia的比較 192 5.6.8 加勁力分佈的比較 200 5.7 改良地震波的結果與分析 202 第六章 結論與建議 210 6.1 結論 210 6.2 建議 214 參考文獻 215 附錄 218  

    參考文獻
    1.Terzaghi, K. (1943) “Theoretical Soil Mechanics” John Wiley & Sons, pp. 118-143.
    2.Meyerhof, G. G. (1951) “The Ultimate Bearing Capacity of Foundations” Geotechnique, Vol. 2, No. 4, pp. 301-331.
    3.Meyerhof, G. G. (1953) “The Bearing Capacity of Foundations Under Eccentric and Inclined Loads” Proceeding Third International Conference on soil Mechanics and Foundation Engineering, Vol. 1, pp. 440-445.
    4.Meyerhof, G. G. (1957). “The ultimate bearing capacity of foundations on slopes” Proc. 4th International Conference on Soil Mechanics and Foundation Engineering, London, 1, 384-386.
    5.Meyerhof, G. G. (1963) “Some Recent Research on the Bearing Capacity of Foundations” Canadian Geotechnical Journal, Vol. 1, No. 1, pp. 16-26.
    6.Hansen, J. B. (1970) “A Revised and Extended Formula for Bearing Capacity” Danish Geotechnical Institute, Copenhagen, Bulletin No.28.
    7.Huang, C.-C., and Kang, W.-W. (2008a) “Seismic Bearing Capacity of A Rigid Footing Adjacent To Cohesionless Slope” Soils and Foundations, Vol. 48, No. 5, pp. 641-651.
    8.Huang, C.-C., and Kang, W.-W. (2008b) “The Effects of a Setback on the Bearing Capacity of a Surface Footing near a Slope” Journal of Geoengineering, Vol. 3, No. 1, pp. 25-32.
    9.Huang,C.C.,and Menq,F.Y.(1997) “Deep-Footing and wide-slab effects in reinforced sandy ground” Journal of Geoengineering and Geoenvironmental Engineering,Vol. 123,No. 1,pp. 30-36.
    10.Huang,C.-C.(2011). “Settlement of footings on reinforced level sandy ground at peak footing load” Geosynthetics International, Vol 18,No. 3,pp. 124-136.
    11.Huang,C.-C.(2011). “Stiffness of reinforced level sandy ground loaded by a footing” Geosynthetics International, Vol 18,No. 3,pp. 137-149.
    12.Huang, C.-C., Horng, J.-C., Chang, W.-J., Chiou, J.-S., and Chen, C.-H., (2011) “Dynamic behavior of reinforced walls – horizontal displacement response” Geotextiles and Geomembranes, Vol. 29, pp. 257-267.
    13.Huang, C.-C., Horng, J.-C., Chang, Chueh, S.-Y., W.-J., Chiou, J.-S., and Chen, C.-H., (2010) “Dynamic behavior of reinforced slopes: horizontal acceleration response’’ Geosynthetics International, Vol. 17, No. 4, pp. 207-219.
    14.Graham, J., Andrews, M. and Shields, D. H. (1988) “Stress characteristics for shallow footings in cohesionless slopes” Canadian Geotechnical Journal, Vol.25, No.2, pp. 238-249.
    15.Segrestin, P. and Bastick, M. J. (1988) “Seismic design of reinforced earth
    retaining walls the contribution of finite element analysis” Proceedings of the International Geotechnical Symposium on Theory and Practice of Earth Reinforcement, pp. 577- 582.
    16.Idriss, I. M. (1990) “Response of soft soil sites during earthquakes” Proceedings
    H. Bolton Seed Memorial Symposium, Vol. 2, No. 4, pp 273-289.
    17.Zhu, D. (2000) “The least upper-bound solution for the bearing capacity factors Nγ” Soil and Foundations, Vol. 40, No. 1, pp. 123-129.
    18.Yamamoto, K. (2010) “Seismic bearing capacity of shallow foundation near slopes using upper-bound method” Internation Journal of geotechnical Engineering, Vol. 4, No. 2, pp. 255-267.
    19.Whitman,R. V. (1990) “Seismic design and behavior of gravity retaining walls” ASCE Specialty Conference : Design and Performance of Earth Retaining Structures, ASCE Geotechnical Special Publication No. 25, pp.817-842.
    20.林煒傑 (2008),「以模型試驗探討加勁邊坡之耐震行為」,國立成功大學土木研究所碩士論文
    21.康文瑋 (2007),「邊坡之基礎承載力分析」,國立成功大學土木研究所碩士論文。
    22.許哲旻 (2014),「承受坡腳開挖之邊坡上方基礎穩定性」,國立成功大學土木研究所碩士論文。
    23.黃柏勛 (2015),「承受基腳掏空之加勁提防穩定性」,國立成功大學土木研究所碩士論文。
    24.陳昱文 (2017),「邊坡之基礎承載力試驗與分析」,國立成功大學土木研究所碩士論文。
    25.王斈文 (2017),「探討加勁擋土牆地震中變位之震動台試驗」,國立成功大學土木研究所碩士論文。
    26.林宜賢 (2018),「邊坡動態基礎承載力試驗與分析」,國立成功大學土木研究所碩士論文。
    27.廖冠傑 (2018),「地工合成物加勁陡坡之耐震行為研究」,國立成功大學土木研究所碩士論文。
    28.黃景川 (1998),「基礎工程」,三民書局。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE