簡易檢索 / 詳目顯示

研究生: 吳傑堂
Wu, Jie-Tang
論文名稱: 應用高頻交流電場下之非平衡電荷動力現象來操控微流體與次微米膠體粒子之探討
Non-equilibrium high-frequency AC electrokinetics for precise manipulation of fluid flows and submicron colloids in micro-devices
指導教授: 魏憲鴻
Wei, Hsien-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 133
中文關鍵詞: 非線性交流電滲流拉伸流動DNA收集
外文關鍵詞: nonlinear AC electro-osmosis, extensional flow, DNA trapping
相關次數: 點閱:148下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主要目的是探討高頻交流電場下之非平衡電荷動力現象,及其在操控微流體與次微米膠體粒子之應用。
    本論文包含三個部份。第一部份探討一個由高頻交流電場下之非線性電滲流所形成之拉伸流動。此現象是由於在非對稱電場作用之下相鄰電滲流漩渦交互作用之下產生之結果。我們發現在100Hz時流場因電化學充電作用(Faradaic charging)呈現拉伸流結構且流速可達300m/s。然而在1kHz時,充電機制轉為歐姆充電作用(Ohmic charging),此時所形成之拉伸流動方向與前者相反且流速減慢。我們發現拉伸速率與電場強度之平方成正比符合非線性Smoluchowski尺度。
    第二部份,我們使用與第一部份相同的電極設計,來觀察在高頻交流電場下,不同DNA溶液所產生的非平衡電荷動力現象。藉此,我們發現溶液性質與作用頻率會影響DNA溶液的流動行為。
    第三部份,我們提出一個運用電荷動力現象來收集並濃縮DNA分子的新方法。此法是運用高頻交流電場下,非平衡電荷動力現象產生的非線性交流電滲流來作用。其遷移率(mobility)與外加電場成正比,這比傳統直流電場更為快速。我們使用不對稱電極設計,由於ACEO漩渦流動交互作用使流體產生匯流,進而形成一遠距且超快速的收集結構。藉此,局部區域內的DNA分子濃度可以在數秒內瞬間提升,且收集DNA分子的作用範圍可長達1mm。同時,本方法不需要連續提供樣品,對於限量之樣品就可以達到明顯的濃度提升。除此之外,我們可以藉由電場的開關來重複收集與釋放DNA分子。由於本方法具有遠距收集的特性,所以對於極稀薄的DNA溶液(10-2 pM)也有明顯的提濃效果。故我們揭示了一個可應用在連續微程序中輸送與濃縮生物分子的新方法。

    This thesis focuses on non-equilibrium, induced-charge electrokinetic flow (ICEO) under high-frequency AC fields and its applications to micromanipulation of fluids and colloids.
    There are three parts in this thesis. In Part I, we demonstrate a microelongational streaming generated by nonlinear electro-osmosis due to AC polarization. The phenomenon is attributed to the unique rectification mechanism that coordinates three-dimensional flow interactions between adjacent microvortices set by an asymmetric quadrupole electric field. This streaming exhibits a stagnation-point structure with velocity ~ 300 um/s at 100Hz due to Faradaic polarization, but is reversed with slower velocity at 1kHz by Ohmic charging. The measured extensional rate shows a quadratic dependence on the field in line with nonlinear Smoluchowski scale.
    In Part II, we employ the same electrode system in Part I and examine the ICEO behavior using different DNA solutions. We find that there exhibit a variety of flow structures, depending on the properties of solutions and applied frequencies.
    In Part III, we report a new electrokinetic scheme capable of trapping and concentrating a trace amount of DNA molecules both efficiently and effectively. It invokes non-equilibrium charge polarization under high-frequency AC fields, creating a nonlinear electro-osmotic flow with the mobility growing linearly with the field and hence rendering response much faster than that under conventional DC fields. With an asymmetric quadruple electrode design, rectified intense converging and focusing streams transform into a robust electrokinetic funnel with a long-range and superfast trapping capability. We demonstrate that DNAs not only are rapidly concentrated into a compact cone within just few seconds, but also are trapped remotely in the form of focused threads that can extend as far as 1mm. More importantly, the concentration can be enhanced by several decades without any continuous DNA feeding. In addition, this funnel is shown to possess a reversible concentration/release switch when successively turning on/off the field. While this long–range funnel is capable of concentrating dilute DNA solutions as low as 10-2 pM, it further offers a potential means for transporting and concentrating biomolecules in a continuous fashion using a microdevices.

    目錄 摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 viii 圖目錄 ix 符號說明 xv 第一章 緒論 1 1.1研究背景 1 1.2文獻回顧 2 1.2.1 應用交流(AC)電場在微流道中操控流體 2 1.2.2應用交流電場在微流道系統中提濃稀薄DNA溶液 3 1.3研究動機 6 第二章 電荷動力學基本原理 16 2.1.A電雙層(Electrical double layer) 16 2.1.B電滲流(Electro-Osmosis , EO)形成機制 18 2.2 交流電滲流(AC Electro-Osmosis , ACEO)的形成機制 20 第三章 微電極系統之製作與組裝 25 3.1電極晶片製作 25 3.1.1電極光罩設計 25 3.1.2玻璃基材清洗 26 3.1.3金屬真空蒸鍍 27 3.1.4光微影製程(Photolithigraphy) 27 3.2微流道光微影製程 31 3.2.1微流道光罩設計 31 3.2.2晶片清洗 31 3.2.3塗佈光阻 31 3.2.4軟烤(Soft Baking) 33 3.2.5曝光(Exposure) 34 3.2.6曝後烤(Post Expose Baking) 35 3.2.7顯影(Development) 35 3.2.8硬烤(Hard Baking) 36 3.3微流道製作 36 3.3.1螢光粒子流動觀察用途的微流道製作 36 3.3.2 DNA流動現象觀察用途的微流道製作 37 3.3.2.A 製作配合高倍率顯微鏡之觀察窗 38 3.3.2.B 微流道製作 38 3.4 微電極與微流道系統之整合與組裝 39 3.4.1微流道與電極晶片組合 40 3.4.2微流道與外部管線結合 40 3.4.3電滲流晶片外接電路組裝 41 3.5 PDMS表面改質 41 3.6實驗設備 42 第四章運用非對稱交流電滲流所產生的拉伸流動行為之實驗探討56 4.1實驗 56 4.1.1工作溶液及螢光粒子 56 4.1.2實驗步驟 57 4.1.3相關實驗細節 58 4.1.4 影像處理軟體(image-pro)拍攝條件參數設定 59 4.1.4.A 影像處理軟體(image-pro)的影像擷取參數條件 59 4.1.4. B影像處理軟體(image-pro)的影像擷取時間參數條件 60 4.2.流場結構與特性 60 4.2.1運用螢光粒子分析流場特性 60 4.2.2. 拉伸流場結構 61 4.3基於3D流動結構及交互作用之2D拉伸流場之形成機理 62 4.3.1 不同頻率之流場結構及主導控制 62 4.3.2 拉伸流場於不同深度之流動變化情形 63 4.4電壓及電極尺寸對於拉伸流場的影響探討 64 4.4.1 拉伸速率 (extensional rate)的測量方法 64 4.4.2 電壓對拉伸速率的影響探討 65 4.4.3 電極尺寸對拉伸速率的影響 66 4.5結論 67 第五章 在DNA溶液中運用非對稱交流電滲流所產生的流動行為 80 5.1實驗 80 5.1.1工作溶液 80 5.1.2實驗步驟 81 5.1.3實驗相關細節 82 5.2 DNA溶液在交流電場下所產生的流動現象 83 5.2.1 以交流電場驅動溶液A所產生的流動行為 83 5.2.2 以交流電場驅動溶液B所產生的流動行為 84 5.2.3 以交流電場驅動溶液C所產生的流動行為 84 5.2.4 以交流電場驅動溶液D所產生的流動行為 85 5.2.5 以交流電場驅動溶液E所產生的流動行為 86 5.2.6 以交流電場驅動溶液F所產生的流動行為 87 5.3結論 89 第六章 應用交流電滲流動結構對於長距離快速捕捉DNA分子之探討 102 6.1 實驗 103 6.1.1工作溶液 103 6.1.2實驗步驟 103 6.1.3實驗相關細節 104 6.1.4影像處理軟體(Meta-morph)拍攝條件參數設定說明 104 6.1.4.A 影像處理軟體(Meta-morph)的影像擷取參數條件 105 6.1.4.B 影像處理軟體(Meta-morph)的影像擷取時間設定 106 6.2實驗現象觀察與實驗數據記錄方法 107 6.2.1實驗現象觀察 107 6.2.1.A DNA分子受流動影響所產生之聚集現象 107 6.2.1.B 形成DNA分子聚集之交流電滲流動結構 109 6.2.2 收集DNA之螢光強度測量及濃度鑑定 110 6.2.2.A 螢光強度數值偵測方法及其數據圖表製作 110 6.2.2.B 建立螢光強度與DNA溶液濃度數值對照表 111 6.3 應用交流電滲流動結構捕捉DNA分子之特性探討 111 6.3.1 應用交流電滲流動結構於捕捉DNA分子之效率探討 112 6.3.2 應用電場開關使DNA分子在電極表面上重複聚集與釋放 113 6.4 結論 114 第七章 結論與建議 124 7.1結論 124 7.2改進建議 125 7.3 未來研究方向 126 參考文獻 128 自述 133

    Ajdari, A., Electro-osmosis on Inhomogeneously Charged Surface, Phys. Rev. Lett.,
    75(4), 755-758, 1995.
    Asbury, L. A., Alan, H. D., Trapping of DNA by dielectrophoresis,
    Electrophoresis, 23, 2658-2666, 2002.
    Bown, M. R., Meinhart, C. D., AC electroosmotic flow in a DNA concentrator,
    Microfluid Nanofluid, 2, 513-523, 2006.
    Brahmasandra, S. N., Ugaz, V. M., Burke, D. T., Mastrangelo, C. H., Burns, M. A.,
    Electrophoresis in microfabricated devices using photopolymerized
    polyacrylamide gels and electrode-defined sample injection, Electrophoresis, 22,
    300-311, 2001.
    Brown, A. B. D., Smith, C. G., Rennie, A. R., Pumping of water with ac electric fields
    applied to asymmetric pairs of microelectrodes, Phys. Rev. E, 63, 016305, 2000.
    Dai, J., Ito, T., Sun, L., Crooks, R. M., Electrokinetic Trapping and Concentration
    Enrichment of DNA in a Microfluidic Channel, J. Am. Chem. Soc., 125,
    13026., 2003.
    Dittrich, P. S., Tachikawa, K., Manz, A., Micro Total Analysis Systems. Latest
    Advancements and Trends, Anal. Chem., 78, 3887, 2006.
    Gagnon, Z., Chang, H. C., Aligning fast alternating current electroosmotic flow fields
    and characteristic frequencies with dielectrophoretic traps to achieve rapid
    bacteria detection, Electrophoresis, 26, 3725-3737, 2005.
    Germishuizen, W. A., Tosch, P., Middelberg, A. P. J., Influence of alternating current
    electrokinetic forces and torque on the elongation of immobilized DNA, J. Appl.
    Phys., 97, 014702, 2005.
    Gonzalez, A., Ramos, A., Green, N. G., Castellanos, A., Morgan, H., Fluid flow
    induced by nonuniform ac electric field in electrolytes on microelectrodes. Ⅱ.
    A linear double-layer analysis, Phys. Rev. E, 61(4), 4019-4028, 2000.
    Green, N. G., Ramos, A., Gonzalez, A., Morgan, H., Castellanos, A., Fluid flow
    induced by nonuniform ac electric field in electrolytes on microelectrodes. Ⅰ.
    Experimental measurements, Phys. Rev. E, 61(4), 4011-4018, 2000.
    Green, N. G., Ramos, A., Gonzalez, A., Morgan, H., Castellanos, A., Fluid flow
    induced by nonuniform ac electric field in electrolytes on microelectrodes. Ⅲ.
    Observation of streamlines and numerical simulation, Phys. Rev. E, 66, 026305,
    2002.
    Hatch, A. V., Herr, A. E., Throckmorton, D. J., Brennan, J. S., Singh, A. K., Integrated
    Preconcentration SDS-PAGE of Proteins in Microchips Using Photopatterned
    Cross-Linked Polyacrylamide Gels, Anal. Chem., 78, 4976-4984, 2006.
    Hu, X., Wang, X., Juang, Y. J., Lee, L. J., Five-cross microfluidic network design free
    of coupling between electrophoretic motion and electro-osmotic flow, Appl.
    Phys. Lett., 89, 084101, 2006.
    Juang, Y. J., Hu, X., Wang, S., Lee, L. J., Lu, C., Electrokinetic interactions in
    microscale cross-slot flow, Appl. Phys. Lett., 87, 244105, 2005.
    Juang, Y. J, Wang, S., Hu, X., Lee, L. J., Dynamics of Single Polymers in a Stagnation
    Flow Induced by Electrokinetics, Phys. Rev. Lett., 93, 268105, 2004.
    Khandurina, J., Jacobson, S. C., Water, L. C., Foote, R. S., Ramsey, J. M.,
    Microfibrication Porous Membrane Structure for Sample Concentration and
    Electrophoretic Analysis, Anal. Chem., 71, 1815-1819, 1999.
    Kim, S. M., Burns, M. A., Hasselbrink, E. F., Electrokinetic Protein Preconcentration
    Using a Simple Glass/Poly(dimethylsiloxane) Microfluidic Chip, Anal. Chem.,
    78, 4779-4785, 2006.
    Lastochkin, D., Zhou, R., Wang, P., Ben, Y., Chang, H. C., Electrokinetic micropump
    and micromixer design based on ac faradaic polarization, J. Appl. Phys., 96(3),
    1730-1733, 2004.
    Lin, C. H., Kaneta, T., On-line sample concentration techniques in capillary
    electrophoresis: Velocity gradient techniques and sample concentration
    techniques for biomolecules, Electrophoresis, 25, 4058-4073, 2004.
    Lin, H. Y., Tsai, L. C., Chi, P. Y., Chen, C. D., Positioning of extended individual
    DNA molecules on electrodes by non-uniform AC electric fields,
    Nanotechnology, 16, 2738–2742, 2005.
    Minerick, A. R., Zhou, R., Takhistov, P., Chang, H. C., Manipulation and
    characterization of red blood cells with alternating current fields in microdevices,
    Electrophoresis, 24, 3703-3717, 2003.
    Mizuno, A., Nishioka, M., Ohno, Y., Dascalescu, L. D., Liquid Microvotex Generated
    Around a Laser Focal Point in an Intense High-Frequency Electric Feld, IEEE
    Trans. Ind. Appl., 31(3), 464-468, 1995.
    Nakano, M., Kurita, H., Komatsu, J., Mizuno, A., Katsura, S., Stretching of long DNA
    molecules in the microvortex induced by laser and ac electric field, Appl. Phys.
    Lett, 89, 133901, 2006.
    Ramos, A., Gonzalez, A., Castellanos, A., Green, N. G., Morgan, H., Pumping of
    liquids with ac voltages applied to asymmetric pairs of microelectrodes, Phys.
    Rev. E, 67, 056302, 2003.
    Shaikh, F. A., Ugaz, V. M., Collection, focusing, and metering of DNA in
    microchannels using addressable electrode arrays for portable low-power
    bioanalysis, Proc. Nat. Acad. Sci., 103(13), 4825, 2006.

    Stroock, A. D., Weck, M., Chiu, D. T., Huck, W. T. S., Kenis, P. J. A., Patterning
    Electro-osmotic Flow with Patterned Surface Charge, Phys. Rev. Lett., 84(15),
    3314-317, 2000.
    Wang, S. C., Chen, H. P., Lee, C. Y., Yu, C. C., Chang, H. C., AC electro-osmotic
    mixing induced by non-contact external electrodes, Biosensors and
    Bioelectronics, 22, 563-567, 2006.
    Wang, S., Hu, X., Lee, L. J., Dynamic Assembly by Electrokinetic Microfluidics, J.
    Am. Chem. Soc.,129, 254, 2007.
    Wang, Y. C., Stevens, A. L., Han, J., Million-fold Preconcentration of Proteins and
    Peptides by Nanofluidic Filter, Anal. Chem., 77, 4293-4299, 2005.
    Washizu, M., Kurosawa, O., Electrostatic Manipulation of DNA in Microfabricated
    Structures, IEEE Trans. Ind. Appl., 26(6), 1165-1172, 1990.
    Wu, J., Ben, Y., Bttigelli, D., Chang, H. C., Long-Range AC Electroosmotic Trapping
    and Detection of Bioparticles, Ind. Eng. Chem. Res., 44(8), 2815-2822, 2005.
    Wu, J., Ben, Y., Chang, H. C., Particle detection by electrical impedance spectroscopy
    with asymmetric-polarization AC electroosmatic trapping, Microfluid Nanofluid,
    1, 161-167, 2005.
    Wong, P. K., Chen, C. Y., Wang, T. H., Ho, C. M., Electrokinetic Bioprocessor for
    Concentrating Cells and Molecules, Anal. Chem., 76, 6908-6914, 2004.
    Yu, C., Davey, M. H., Svec, F., Frechet, J. M. J., Monolithic Porous Polymer for
    On-Chip Solid-Phase Extraction and Preconcentration Prepared by Photoinitiated
    in Situ Polymerization within a Microfluidic Device, Anal. Chem., 73,
    5088-5096, 2001.
    Zhou, H., White, L. R., Tilton, R. D., Lateral separation of colloids or cells by
    dielectrophoresis augmented by AC electroosmosis, J. Colloid Interface Sci.,
    285, 179-191, 2005.
    葉宗儒,具圓形凹槽結構的微流道系統之流動特性探討及其在微混合器之應用,
    碩士論文,國立成功大學,2005。
    李孟駿,以結合流動之介電泳操控次微米粒子運動的實驗探討,碩士論文,國立
    成功大學,2006。

    下載圖示 校內:2010-06-11公開
    校外:2010-06-11公開
    QR CODE