| 研究生: |
吳傑堂 Wu, Jie-Tang |
|---|---|
| 論文名稱: |
應用高頻交流電場下之非平衡電荷動力現象來操控微流體與次微米膠體粒子之探討 Non-equilibrium high-frequency AC electrokinetics for precise manipulation of fluid flows and submicron colloids in micro-devices |
| 指導教授: |
魏憲鴻
Wei, Hsien-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 非線性交流電滲流 、拉伸流動 、DNA收集 |
| 外文關鍵詞: | nonlinear AC electro-osmosis, extensional flow, DNA trapping |
| 相關次數: | 點閱:148 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主要目的是探討高頻交流電場下之非平衡電荷動力現象,及其在操控微流體與次微米膠體粒子之應用。
本論文包含三個部份。第一部份探討一個由高頻交流電場下之非線性電滲流所形成之拉伸流動。此現象是由於在非對稱電場作用之下相鄰電滲流漩渦交互作用之下產生之結果。我們發現在100Hz時流場因電化學充電作用(Faradaic charging)呈現拉伸流結構且流速可達300m/s。然而在1kHz時,充電機制轉為歐姆充電作用(Ohmic charging),此時所形成之拉伸流動方向與前者相反且流速減慢。我們發現拉伸速率與電場強度之平方成正比符合非線性Smoluchowski尺度。
第二部份,我們使用與第一部份相同的電極設計,來觀察在高頻交流電場下,不同DNA溶液所產生的非平衡電荷動力現象。藉此,我們發現溶液性質與作用頻率會影響DNA溶液的流動行為。
第三部份,我們提出一個運用電荷動力現象來收集並濃縮DNA分子的新方法。此法是運用高頻交流電場下,非平衡電荷動力現象產生的非線性交流電滲流來作用。其遷移率(mobility)與外加電場成正比,這比傳統直流電場更為快速。我們使用不對稱電極設計,由於ACEO漩渦流動交互作用使流體產生匯流,進而形成一遠距且超快速的收集結構。藉此,局部區域內的DNA分子濃度可以在數秒內瞬間提升,且收集DNA分子的作用範圍可長達1mm。同時,本方法不需要連續提供樣品,對於限量之樣品就可以達到明顯的濃度提升。除此之外,我們可以藉由電場的開關來重複收集與釋放DNA分子。由於本方法具有遠距收集的特性,所以對於極稀薄的DNA溶液(10-2 pM)也有明顯的提濃效果。故我們揭示了一個可應用在連續微程序中輸送與濃縮生物分子的新方法。
This thesis focuses on non-equilibrium, induced-charge electrokinetic flow (ICEO) under high-frequency AC fields and its applications to micromanipulation of fluids and colloids.
There are three parts in this thesis. In Part I, we demonstrate a microelongational streaming generated by nonlinear electro-osmosis due to AC polarization. The phenomenon is attributed to the unique rectification mechanism that coordinates three-dimensional flow interactions between adjacent microvortices set by an asymmetric quadrupole electric field. This streaming exhibits a stagnation-point structure with velocity ~ 300 um/s at 100Hz due to Faradaic polarization, but is reversed with slower velocity at 1kHz by Ohmic charging. The measured extensional rate shows a quadratic dependence on the field in line with nonlinear Smoluchowski scale.
In Part II, we employ the same electrode system in Part I and examine the ICEO behavior using different DNA solutions. We find that there exhibit a variety of flow structures, depending on the properties of solutions and applied frequencies.
In Part III, we report a new electrokinetic scheme capable of trapping and concentrating a trace amount of DNA molecules both efficiently and effectively. It invokes non-equilibrium charge polarization under high-frequency AC fields, creating a nonlinear electro-osmotic flow with the mobility growing linearly with the field and hence rendering response much faster than that under conventional DC fields. With an asymmetric quadruple electrode design, rectified intense converging and focusing streams transform into a robust electrokinetic funnel with a long-range and superfast trapping capability. We demonstrate that DNAs not only are rapidly concentrated into a compact cone within just few seconds, but also are trapped remotely in the form of focused threads that can extend as far as 1mm. More importantly, the concentration can be enhanced by several decades without any continuous DNA feeding. In addition, this funnel is shown to possess a reversible concentration/release switch when successively turning on/off the field. While this long–range funnel is capable of concentrating dilute DNA solutions as low as 10-2 pM, it further offers a potential means for transporting and concentrating biomolecules in a continuous fashion using a microdevices.
Ajdari, A., Electro-osmosis on Inhomogeneously Charged Surface, Phys. Rev. Lett.,
75(4), 755-758, 1995.
Asbury, L. A., Alan, H. D., Trapping of DNA by dielectrophoresis,
Electrophoresis, 23, 2658-2666, 2002.
Bown, M. R., Meinhart, C. D., AC electroosmotic flow in a DNA concentrator,
Microfluid Nanofluid, 2, 513-523, 2006.
Brahmasandra, S. N., Ugaz, V. M., Burke, D. T., Mastrangelo, C. H., Burns, M. A.,
Electrophoresis in microfabricated devices using photopolymerized
polyacrylamide gels and electrode-defined sample injection, Electrophoresis, 22,
300-311, 2001.
Brown, A. B. D., Smith, C. G., Rennie, A. R., Pumping of water with ac electric fields
applied to asymmetric pairs of microelectrodes, Phys. Rev. E, 63, 016305, 2000.
Dai, J., Ito, T., Sun, L., Crooks, R. M., Electrokinetic Trapping and Concentration
Enrichment of DNA in a Microfluidic Channel, J. Am. Chem. Soc., 125,
13026., 2003.
Dittrich, P. S., Tachikawa, K., Manz, A., Micro Total Analysis Systems. Latest
Advancements and Trends, Anal. Chem., 78, 3887, 2006.
Gagnon, Z., Chang, H. C., Aligning fast alternating current electroosmotic flow fields
and characteristic frequencies with dielectrophoretic traps to achieve rapid
bacteria detection, Electrophoresis, 26, 3725-3737, 2005.
Germishuizen, W. A., Tosch, P., Middelberg, A. P. J., Influence of alternating current
electrokinetic forces and torque on the elongation of immobilized DNA, J. Appl.
Phys., 97, 014702, 2005.
Gonzalez, A., Ramos, A., Green, N. G., Castellanos, A., Morgan, H., Fluid flow
induced by nonuniform ac electric field in electrolytes on microelectrodes. Ⅱ.
A linear double-layer analysis, Phys. Rev. E, 61(4), 4019-4028, 2000.
Green, N. G., Ramos, A., Gonzalez, A., Morgan, H., Castellanos, A., Fluid flow
induced by nonuniform ac electric field in electrolytes on microelectrodes. Ⅰ.
Experimental measurements, Phys. Rev. E, 61(4), 4011-4018, 2000.
Green, N. G., Ramos, A., Gonzalez, A., Morgan, H., Castellanos, A., Fluid flow
induced by nonuniform ac electric field in electrolytes on microelectrodes. Ⅲ.
Observation of streamlines and numerical simulation, Phys. Rev. E, 66, 026305,
2002.
Hatch, A. V., Herr, A. E., Throckmorton, D. J., Brennan, J. S., Singh, A. K., Integrated
Preconcentration SDS-PAGE of Proteins in Microchips Using Photopatterned
Cross-Linked Polyacrylamide Gels, Anal. Chem., 78, 4976-4984, 2006.
Hu, X., Wang, X., Juang, Y. J., Lee, L. J., Five-cross microfluidic network design free
of coupling between electrophoretic motion and electro-osmotic flow, Appl.
Phys. Lett., 89, 084101, 2006.
Juang, Y. J., Hu, X., Wang, S., Lee, L. J., Lu, C., Electrokinetic interactions in
microscale cross-slot flow, Appl. Phys. Lett., 87, 244105, 2005.
Juang, Y. J, Wang, S., Hu, X., Lee, L. J., Dynamics of Single Polymers in a Stagnation
Flow Induced by Electrokinetics, Phys. Rev. Lett., 93, 268105, 2004.
Khandurina, J., Jacobson, S. C., Water, L. C., Foote, R. S., Ramsey, J. M.,
Microfibrication Porous Membrane Structure for Sample Concentration and
Electrophoretic Analysis, Anal. Chem., 71, 1815-1819, 1999.
Kim, S. M., Burns, M. A., Hasselbrink, E. F., Electrokinetic Protein Preconcentration
Using a Simple Glass/Poly(dimethylsiloxane) Microfluidic Chip, Anal. Chem.,
78, 4779-4785, 2006.
Lastochkin, D., Zhou, R., Wang, P., Ben, Y., Chang, H. C., Electrokinetic micropump
and micromixer design based on ac faradaic polarization, J. Appl. Phys., 96(3),
1730-1733, 2004.
Lin, C. H., Kaneta, T., On-line sample concentration techniques in capillary
electrophoresis: Velocity gradient techniques and sample concentration
techniques for biomolecules, Electrophoresis, 25, 4058-4073, 2004.
Lin, H. Y., Tsai, L. C., Chi, P. Y., Chen, C. D., Positioning of extended individual
DNA molecules on electrodes by non-uniform AC electric fields,
Nanotechnology, 16, 2738–2742, 2005.
Minerick, A. R., Zhou, R., Takhistov, P., Chang, H. C., Manipulation and
characterization of red blood cells with alternating current fields in microdevices,
Electrophoresis, 24, 3703-3717, 2003.
Mizuno, A., Nishioka, M., Ohno, Y., Dascalescu, L. D., Liquid Microvotex Generated
Around a Laser Focal Point in an Intense High-Frequency Electric Feld, IEEE
Trans. Ind. Appl., 31(3), 464-468, 1995.
Nakano, M., Kurita, H., Komatsu, J., Mizuno, A., Katsura, S., Stretching of long DNA
molecules in the microvortex induced by laser and ac electric field, Appl. Phys.
Lett, 89, 133901, 2006.
Ramos, A., Gonzalez, A., Castellanos, A., Green, N. G., Morgan, H., Pumping of
liquids with ac voltages applied to asymmetric pairs of microelectrodes, Phys.
Rev. E, 67, 056302, 2003.
Shaikh, F. A., Ugaz, V. M., Collection, focusing, and metering of DNA in
microchannels using addressable electrode arrays for portable low-power
bioanalysis, Proc. Nat. Acad. Sci., 103(13), 4825, 2006.
Stroock, A. D., Weck, M., Chiu, D. T., Huck, W. T. S., Kenis, P. J. A., Patterning
Electro-osmotic Flow with Patterned Surface Charge, Phys. Rev. Lett., 84(15),
3314-317, 2000.
Wang, S. C., Chen, H. P., Lee, C. Y., Yu, C. C., Chang, H. C., AC electro-osmotic
mixing induced by non-contact external electrodes, Biosensors and
Bioelectronics, 22, 563-567, 2006.
Wang, S., Hu, X., Lee, L. J., Dynamic Assembly by Electrokinetic Microfluidics, J.
Am. Chem. Soc.,129, 254, 2007.
Wang, Y. C., Stevens, A. L., Han, J., Million-fold Preconcentration of Proteins and
Peptides by Nanofluidic Filter, Anal. Chem., 77, 4293-4299, 2005.
Washizu, M., Kurosawa, O., Electrostatic Manipulation of DNA in Microfabricated
Structures, IEEE Trans. Ind. Appl., 26(6), 1165-1172, 1990.
Wu, J., Ben, Y., Bttigelli, D., Chang, H. C., Long-Range AC Electroosmotic Trapping
and Detection of Bioparticles, Ind. Eng. Chem. Res., 44(8), 2815-2822, 2005.
Wu, J., Ben, Y., Chang, H. C., Particle detection by electrical impedance spectroscopy
with asymmetric-polarization AC electroosmatic trapping, Microfluid Nanofluid,
1, 161-167, 2005.
Wong, P. K., Chen, C. Y., Wang, T. H., Ho, C. M., Electrokinetic Bioprocessor for
Concentrating Cells and Molecules, Anal. Chem., 76, 6908-6914, 2004.
Yu, C., Davey, M. H., Svec, F., Frechet, J. M. J., Monolithic Porous Polymer for
On-Chip Solid-Phase Extraction and Preconcentration Prepared by Photoinitiated
in Situ Polymerization within a Microfluidic Device, Anal. Chem., 73,
5088-5096, 2001.
Zhou, H., White, L. R., Tilton, R. D., Lateral separation of colloids or cells by
dielectrophoresis augmented by AC electroosmosis, J. Colloid Interface Sci.,
285, 179-191, 2005.
葉宗儒,具圓形凹槽結構的微流道系統之流動特性探討及其在微混合器之應用,
碩士論文,國立成功大學,2005。
李孟駿,以結合流動之介電泳操控次微米粒子運動的實驗探討,碩士論文,國立
成功大學,2006。