簡易檢索 / 詳目顯示

研究生: 徐筱媛
Hsu, Hsiao-Yuan
論文名稱: 台灣東部溫泉之硫同位素分布特性
The Distribution of Dissolved Sulphur Isotopes of Hot Springs from Eastern Taiwan
指導教授: 游鎮烽
You, Chen-Feng
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 70
中文關鍵詞: 硫同位素台灣東部溫泉主要元素
外文關鍵詞: Sulpur, Sulphur isotope, major element, Hotsprings in Eastern Taiwan
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硫為溫泉中含量最為豐富的元素之一,台灣東部地區因為異常高的地溫梯度和變質岩帶,含有豐富的溫泉資源,前人研究已有利用氫氧同位素對溫泉水的來源以及循環過程進行分析,並了解溫泉水之化學成份變化。但是前人研究中,一直缺少於東部地區有系統的硫同位素分析,本研究將以溫泉水中的硫酸鹽類,分析硫同位素成份之變化,討論硫的來源與分異之現象,並希望綜合前人研究之其他同位素資料,探討該區域硫的來源。
    本研究的樣本,在東部溫泉地區採的樣本共有五處以及其附近河流樣本進行比較溫泉附近水體是否會受之影響。另外還有兩處日本溫泉樣本,希望利用日本完善的溫泉研究進行比對。根據主要元素分析結果,當地溫泉成分介於雨水和海水之間,而由於受到圍岩作用,該區域的溫泉水主要是以碳酸鹽泉為主。在硫同位素值部分整體溫泉水為 -3.17 ~ 24.87‰。綜合前人研究溫泉泉水成分分析、溫泉水之化學成分分析及其硫同位素分析研究,將溫泉水分成三組,分別利用硫在自然環境中為良好示蹤計特性,討論東台灣地區硫同位素在溫泉水中的分布。

    This study involves the determination of sulphur (S) isotopes in water samples from hot springs and nearby rivers. The water samples were pre-concentrated, subjected to separation with anion exchange resin AG1-X8 and sulphur isotopic analysis was performed with a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). Concentrations of anions and cations were determined with ion chromatography (IC) and inductively coupled plasma-optical emission spectrometer (ICP-OES), respectively. Samples from western Japan were pre-defined as Na–Cl type ground water, and originated from 'fossil seawater' entrapped in the formations. The K/Cl and SO4/Cl ratios in hot spring water samples were in a range between those of rain water and sea water. The Br/Cl ratios in hot spring water samples were close to that of seawater line, and could be distinguished from river water samples. The δ34S values in most of the hot spring water samples were in the range 15.74-24.87 ‰, and this range is close to δ34S in seawater (+21 ‰). However, δ34S values in water samples from Chibben (Taiwan) and Kurama (Japan) were -1.50‰ and -3.17 ‰, respectively. The lighter sulphur isotope ratios in these two hot water spring resorts indicate the reduction of sulphate, probably by bacteria, because of domestic contamination in the groundwater system. The data on major elements and sulphur isotopes showed that the river water samples, which were collected near hot spring wells, were influenced by the hot springs. Based on the water chemistry of end members i.e., Br/Cl, Na/Cl, K/Cl, SO4/Cl and sulphur isotope signatures, most of the water samples from Eastern Taiwan were considered to be a mixture of rainwater, sulphate fluid from digenetic barite, alternating metamorphic sulphide fluid and sea water (or brine).

    摘要 I Abstract II Acknowledgments III Table of Content IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 1-1. Sulphur isotopes 3 1-2. Sulphur isotopes in Hydrothermal system: worldwide studies 9 1-3. Aim of Present Study 13 Chapter 2 Geological Setting 14 2-1. Samples from Eastern Taiwan 14 2-2. Samples from Misasa, Japan 20 2-3. Samples from Kurama, Japan 22 Chapter 3 Analytical Techniques and Procedures 24 3-1. Laboratory Environment and Chemical Reagents 24 3-2. Sample Collection and Pre-treatment 25 3-3. Anion and Major Elements Analysis 26 3-4. Purification of Sulphur 29 3-5. Sulphur Isotopic Analysis 31 Chapter 4 Results and Discussion 35 4-1. The Chemical Composition 35 4-2. Sulfur Concentration and Isotopic Composition 49 4-3. Origin of Sulphur in Hot Springs 56 4-3-1. Origin of Sulphur in Group I 56 4-3-2. Origin of Sulphur in Group II 57 4-3-3. Origin of Sulphur in Group III 58 Chapter 5 Conclusions 59 References 61

    Arnold M. and Sheppard S. M.F (1981) East Pacific Rise at latitude 21°N: isotopic composition and origin of the hydrothermal Sulphur. Earth and Planetary Science Letters 56, 148-156.
    Arnórsson S., Gunnlaugsson E. and Svavarsson H. (1983) The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions, Geochim. Cosmochim. Acta. 47, 547–566.
    Biq C.C. (1971) A Fossil Subduction Zone in Taiwan. Proceedings of the Geological Society of China. 14, 146-154 (in Chinese)
    Biq C.C. (1971) Some aspects of post-orogenic block tectonics in Taiwan, Bull. R. Soc. N. Z. 9, 19-24.
    Biq C.C. (1973) Kinematic pattern of Taiwan as an example of actual continent-arc collision. Report of the Seminar on Seismology, US-ROC Cooperative Science Program, 21-26.
    Bischoff J.L. (1980) Geothermal System at 21°N, East Pacific Rise: Physical Limits on Geothermal Fluid and Role of Adiabatic Expansion. Science. 207 (4438), 1465-1469
    Bluth G.J. and Ohmoto H. (1988) Sulfide-sulfate chimneys on the East Pacific Rise, 11° and 13°N latitudes; Part II, Sulfur isotopes, Can. Mineral. 26 (3), 505–515.
    Bowin C., Lu, R.S., Lee, C.S. and Schouten. H. (1978) Plate convergence and accretion in the Taiwan Luzon region. Am. Assoc. Pet. Geol. Bull. 62, 1645-1672.
    Chai B.H.T. (1972) Structure and tectonic evolution of Taiwan, Am. J. Sci. 272, 389-442.
    Chen C.H. (1975) The Origin of Hotspring and Expolration of Geothermal of Taiwan. Ti-Chih. 1(2), 107-117. (in Chinese)
    Chen C.H. (1984) Chemical Characteristics of Thermal Waters in the Central Range of Taiwan, R.O.C., Chem. Geol. 49, 303-317.
    Chen C.H. (1989) The Hotspring and Geothermal of Taiwan. Ti-Chih. 9(2), 327-340. (in Chinese)
    Chen C.T.A., Wang B.J., Hsu H.C., Hung J.J. (1994) Rain and Lake Waters in Taiwan: Composition and Acidity. T.A.O. 5, 573-584.
    Chen Y.J., Pirajno F., Sui Y.H. (2004) Isotope geochemistry of the Tieluping silver deposit, Henan, China: a case study of orogenic silver deposits and related tectonic setting. Miner. Depos. 39, 560–575
    Christiansen R.L. (2011) Geology of Yellowstone National Park. The Quaternary and Pliocene Yellowstone Plateau Volcanic field of Wyoming, Idaho, and Montana. U.S. Geological Survey Professional Paper 729-G.
    Colman S.M. (1982) Chemical weathering of basalts and andesites: Evidence from weathering rinds, USGS Prof. Paper 1246, Washington, D.C.,
    Craddock P.R., Rouxel O.J., BallL. A. and Bach W. (2008) Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS. Chem. Geol. 253, 102-113.
    Das A., Chung C.H. and You C.F. (2012) Disproportionately high rates of sulfide oxidation from mountainous river basins of Taiwan orogeny: Sulfur isotope evidence. Geophysical Research Letters 39, L12404, doi: 101029
    Das A., Chung C.H., You C.F. and Shen M.L. (2012) Application of an improved ion exchange technique for the measurement of δ34S values from microgram quantities of sulfur by MC-ICPMS. J. Anal. At. Spectrom. 27, 2088-2093.
    Dean W.E. and Schreiber, B.C. (1977) Authigenic barite, in Lancelot, Y., et al., Proceedings of the Deep Sea Drilling Project, Initial reports, Washington, D.C., U.S. Government Printing Office 41, 915–931
    Ding T., Valkiers S., Kipphardt H., Bievre P.D., Taylor P.D.P., Gonfiantini R. and Krouse R. (2001) Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur Geochimica et Cosmochimica Acta, 65 (15), 2433–2437
    Druschel G.K., Schoonen M.A.A., Nordstrom D.K., Ball J.W., Xu Y. and Cohn C.A. (2003) Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. III. An anion-exchange resin technique for sampling and preservation of sulfoxyanions in natural waters, Geochem. Trans. 4, 12–19.
    Elderfield H., Kastner M. and Martin J.B. (1990) Composition and sources of fluids in sediments of the Peru subduction zone. Journal of Geophysical Research, 95, 8819–8828
    Ernst W.G. (1983a) Mountain building and metamorphism: acase history from Taiwan. In: K.J. Hsu (Editor) Mountain Building Processes. Academic Press, London, 247-256.
    Ernst W.G. (1983b.) Mineral parageneses in metamorphic rock sexposed along Tailuko Gorge, Central Mountain Range, Taiwan. J. Metamorph. Geol. 1, 305-329.
    Ezoe Y., Lin C.H., Noto M., Watanabe Y. and Yoshimura K. (2002) Evolution of water chemistry in natural acidic environments in Yangming shan, Taiwan. J. Environ. Monit., 4, 533–540, doi:10.1039
    Fournier R.O. (1989) Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Annu Rev Earth Pl Sc. 17, 13-53.
    Fournier R.O. (2005) Geochemistry and dynamics of the Yellowstone national park hydrothermal system. Geothermal Biology and Geochemistry in Yellowstone National Park. Proceeding of the Thermal Biology Institute workshop. Edited by: Inskeep WP, McDermott TR. Bozeman: Montana State University Publications, 3-30.
    Gardner R. and Walsh N. (1996) Chemical weathering of metamorphic rocks from low elevations in the southern Himalaya. Chem. Geol. 127, 161-176.
    Giggenbach W.F. (1980) Geothermal gas equilibria. Geochim. Cosmochim. Acta. 44, 2021–2032.
    Harrison A.G. and Thode H.G. (1958) Mechanism of bacterial reduction of sulfate from isotope fractionation studies. Faraday Society Transactions. 54, 84–92.
    Ho C.S. (1986) A synthesis of the geologic evolution of Taiwan. Tectono physics, 125, 1-16.
    Ho C.S. (1986) Geology of Taiwan: Geology map of Taiwan. Central Geological Survey (MOEA), Taipei (in Chinese)
    Hoefs J. (2009) Stable Isotope Geochemistry (6th ed.) Springer-Verlag, Berlin, 1–285
    Horng C.S., Huh C.A., Chen K.H. and Lin C.H. (2012) Pyrrhotite as a tracer for denudation of the Taiwan orogeny. G3 13
    Jahn B.M., Martineau F., Peucat J.J. and Cornichet J. (1986) Geochronology of the Tananao Schist complex, Taiwan, and its regional tectonic significance. Tectonophysics, 1251, 103-124.
    Jahn B.M., Martineau, F., Peucat J.J. and Comichet J. (1986) Geochronology of the Tananao schist complex, Taiwan, and its regional tectonic significance. Tectonophysics, 125, 103-124.
    Juan V.C. (1975) Tectonic evolution of Taiwan. Tectonophysics, 26, 197-212.
    Kaasalainen H. and Stefánsson A. (2011) Sulfur speciation in natural hydrothermal waters, Iceland Geochim. Cosmochim. Acta, 75, 2777-2791.
    Kamyshny A., Zilberbrand M., I. Ekeltchik, Voitsekovski T., Gun J. and Lev O. (2008) Speciation of polysulfides and zerovalent sulfur in sulfide-rich water wells in Southern and Central Israel, Aquat. Geochem. 14, 171-192.
    Karim A. and Veizer J. (2000) Weathering processes in the Indus River Basin: implications from riverine carbon, sulfur, oxygen, and strontium isotopes, Chem. Geol. 170, 153-177.
    Kastner M., Elderfield, H., Martin, J.B., Suess, E., Kvenvolden, A. and Garrison, R.E. (1990) Diagenesis and interstitial water chemistry at the Peruvian continental margins—Major constituents and strontium isotopes, in Suess, E., and von Huene, R., Initial reports of the Ocean Drilling Program, 112 B: College Station, Texas, Ocean Drilling Program, 413–440.
    Kerridge J.F., Haymon R.M. and KastnerM. (1983) Sulfur isotope systematics at the 21°N site, East Pacific Rise. Earth Planet. Sci. Lett. 66, 91–100.
    Kuo N.T. (2007) Sr-Nd-Hf-Pb Constrains on the role of South China Sea Sediments in Mantle Wedge Metasomatism beneath the North Luzon Arc. MS. thesis, National Cheng Kung Univ.
    Lan C.Y., Lee T., Mertzman S. A., WuT. W., Jahn B. M., Yui T. F. and Shen J. S. (1991) Geochemical and isotopic study of gneiss, associated metabasites at the Central Range, Taiwan, Prod. Geol. Soc. China (Taiwan) 34: 233-266.
    Li Y.H., Chen C.T. and Huang J.J. (1997) Aquatic chemistry of lakes and reservoirs in Taiwan, TAO, 8: 405-426.
    Liou J. and Ernst W.G. (1984) Summary of Phanerozoic metamorphism in Taiwan, Mem. Geol. Soc. China 6: 133–152.
    Liu C.M., Song S.R., Chen Y.L. and Tsao S.J. (2011) Characteristics and Origins of Hot Springs in the Tatun Volcano Group in Northern Taiwan Terr. Atmos. Ocean. Sci., 22: 475-489
    Liu K.K., Yu T.F., Shieh Y.N., Chen L.H., Hu C.Y. and Chiang S.C. (1982) Carbon, Hydrogen and Oxygen Isotope Studies Of Chinshui Geothermal Area, Ilan. Institute of Earth Sciences of Academia Sinica. 89, 65-85.
    Lonsdale P. (1979) A deep-sea hydrothermal site on a strike-slip fault. Nature. 281, 531–534
    MacNamara J. and Thode H. G. (1950) Comparison of the isotopic constitution of terrestrial and meteoritic sulfur. Phys. Rev. 78 (3), 307–308.
    Marini L., Moretti R. and Accornero M. (2011) Sulfur isotopes in magmatic-hydrothermal systems, melts and magmas, Rev. Mineral. Geochem, 73, 423–492.
    McDermott J.M., Ono S., Tivey M.., Seewald J.S., Shanks III W.C. and Solow A.R. (2015) Identification of sulfur sources and isotopic equilibriain submarine hot-springs using multiple sulfur isotopes. Geochimica et Cosmochimica Acta. 160, 169–187
    Morgan L.A. and Shanks W.C. (2005) Influences of rhyolitic lava flows on hydrothermal processes in Yellowstone Lake and on the Yellowstone plateau. Geothermal Biology and Geochemistry in Yellowstone National Park. Proceeding of the Thermal Biology Institute workshop. Edited by: Inskeep WP, McDermott TR. Bozeman: Montana State University Publications, 31-52.
    Muto T., Meyrowitz R., Pommer A.M. and Murano T. (1959) Ningyoite, A New Uranous Phosphate Mineral from Japan. The American Mineralogist. 44, 633-650
    Naehr, T.H., Stakes, D.S. and Moore, W.S. (2000) Mass wasting, ephemeral fluid flow, and barite deposition on the California continental margin. Geology 28, 315–318.
    Nordstrom D.K. McCleskey R.B. and Ball J.W. (2009) Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters. Appl Geochem. 24, 191-207.
    Ohmoto H. and Rye R.O. (1979) Isotopes of sulfur and carbon H.L. Barnes (Ed.), Geochemistry of Hydrothermal Ore Deposits (2nd edition), Wiley, New York, 509–567.
    Ono S., Shanks III W.C., Rouxel O.J. and Rumble D. (2007) S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochim. Cosmochim. Acta. 71 (5), 1170-1182.
    Paytan A., Mearon S., Cobb K. and Kastner M. (2002) Origin of marine barite deposits: Sr and S isotope characterization. Geology 30, 747-750.
    Rouxel O., Shanks III W.C., Bach W. and Edwards K.J. (2008) Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9–10°N. Chem. Geol. 252 (3–4), 214–227.
    Sakai H. (1957) Fractionation of sulfur isotopes in nature. Geochim. Cosmochim. Acta 12, 150-169.
    Sakoda A., Hanamotoa K., Ishimorib Y., Nagamatsua T. and Yamaoka K. (2008) Radioactivity and radon emanation fraction of the granites sampled at Misasa and Badgastein. Applied Radiation and Isotopes. 66 (5), 648–652
    Sawyer C.N. (1947) Fertilization of lakes by agricultural and urban drainage. J. New Engl. Water Works Assoc. 61, 109-127.
    Shanks III W.C. (2001) Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. In Stable Isotope Geochemistry (eds. J. W. Valley and D. R. Cole), Rev. Min. Geochem., Min. Soc. Amer., Washington, D.C., 43(1), 469-525.
    Smith R.B., Jordan M., Steinberger B., Puskas C.M., Farrell J., Waite G.P., Husen S., Chang W.L. and O’Connell R. (2009) Geodynamic of the Yellowstone hotspot and mantle plume: Seismic and GPS imaging, kinematics, and mantle flow. J Volcanol Geoth Res. 188, 26-56.
    Stefánsson A., Kellera N., Robin J. and Ono S. (2015) Multiple sulfur isotope systematics of Icelandic geothermal fluids and the source and reactions of sulfur in volcanic geothermal systems at divergent plate boundaries. Geochim. Cosmochim. Acta 165, 307-323.
    Teng L.S. (1990) Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tecionophysics. 183, 57-76
    Torres M.E., Bohrmann G. and Suess E. (1996a) Authigenic barites and fluxes of barium associated with fluid seeps in the Peru subduction zone: Earth and Planetary Science Letters. 144, 469–481.
    Torres M.E., Brumsack H.J., Bohrmann G. and Emeis K.C. (1996b) Barite fronts in continental sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in authigenic fronts. Chemical Geology. 127, 125–139.
    Truesdell A.H., Rye R.O., Whelan J.F. and Thompson J.M. (1978) Sulfate chemical and isotopic patterns in thermal waters of Yellowstone Park Wyoming. USGS Open File Report. 78–701: 435-436.
    Watanabe K. (1987) Geochemical behaviour of iron and manganese ions in the Ningyo-Toge uranium deposit district, southwest Japan. Chem. Geol. 60, 299-307.
    Werner C., Hurwitz S., Evans W.C., Lowenstern J.B., Bergfeld D., Heasler H., Jaworowski C. and Hunt A. (2008) Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA. J Volcanol Geoth Res.178, 751-762.
    Wieser M.E. and Coplen T.B. (2011) Atomic weight of the elements 2009 (IUPAC technical report), Pure Appl. Chem. 83359–396.
    Woodruff L.G. and Shanks III W.C. (1988) Sulfur isotope study of chimney minerals and vent fluids from 21°N, East Pacific Rise: hydrothermal sulfur sources and disequilibrium sulfate reduction, J. Geophys. Res. Solid Earth. 93 (B5), 4562-4572.
    Xu Y., Schoonen M.A.A., Nordstrom D.K., Cunningham K.M. and Ball J.W. (1998) Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. The origin of thiosulfate in hotspring waters. Geochim. Cosmochim. Acta. 62, 3729–3743.
    Xu Y., Schoonen M.A.A., Nordstrom D.K., Cunningham K.M. and Ball J.W. (2000) Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. II. Formation and decomposition of thiosulfate and polythionate in cinder pool. J. Volcanol. Geotherm. Res. 97, 407–423.
    Yen T.P. (1954) The gneisses of Taiwan. Bull. Geol. Surv. Taiwan 5, 1-100.
    Yen T.P. (1960) A stratigraphic study of the Tananao Schist in northern Taiwan. Bull. Geol. Surv. Taiwan 12, 53-66.
    Yen T.P. (1967) Geohistory of Taiwan. Proc. Geol. Soc. China. 19, 52-58.
    Yen Y.L. (2008) Rare Earth Element Concentrations and Patterns in Taiwan Hot Springs. MS. thesis, National Cheng Kung Univ. (in Chinese)
    Zamana L.V., Askarov S.A., Borzenko S.V., Chudaev O.V. and Bragin I.V. (2010) Isotopes of Sulfide and Sulfate Sulfur in Nitrogen Hot Springs of the Bauntov Group (Baikal Rift Zone). Doklady Earth Sciences. 435 (1), 1515-1517.
    Zinder S and Brock TD (1977) Sulfur dioxide in geothermal waters and gases. Geochim Cosmochim Acta. 41, 73-79.
    (1969) Geothermal Exploration in the Tatun Volcano Group (1), UMC (in Chinese)
    (1970) Geothermal Exploration in the Tatun Volcano Group (2), UMC (in Chinese)
    (1971) Geothermal Exploration in the Tatun Volcano Group (3), UMC (in Chinese)
    (1973) Geothermal Exploration in the Tatun Volcano Group (4), UMC (in Chinese)

    Websites:
    中央地質調查所 MOEA: http://www.moeacgs.gov.tw/main.jsp

    無法下載圖示 校內:2022-01-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE