| 研究生: |
陳昭興 Chen, Chao-Hsing |
|---|---|
| 論文名稱: |
以光調制光譜研究磷化銦鎵與砷化鎵異質接面雙極性電晶體內建電場的分佈 Studies of Built-in Electric Field in InGaP/GaAs Heterojunction Bipolar Transistor by Photoreflectance Spectroscopy |
| 指導教授: |
黃正雄
Hwang, Jenn-Shyong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 異質接面雙極性電晶體 、光調制光譜 、內建電場 |
| 外文關鍵詞: | photoreflectance, heterojunction bipolar transistor, built-in electric field |
| 相關次數: | 點閱:118 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文利用光調制光譜(Photoreflectance Spectroscopy,PR)對磷化銦鎵/砷化鎵(InGaP/GaAs)異質接面雙極性電晶體(HBT)的界面間電場做詳細分析。分析PR的譜圖中Franz-Keldysh Oscillations(FKO)訊號,可擬合出兩個不同來源的電場。其一為跨越射極/基極界面的內建電場,另一電場來源則為跨越集極/基極區域的內建電場。其中射極/基極區域的內建電場的實驗值與理論計算的平均電場約有26%的誤差,此差異可歸因於磷化銦鎵的有序度(order)造成的壓電場(Piezoelectric Field);而集極/基極區域的內建電場的實驗值與理論平均電場值則堪稱吻合。此外比較實驗電場與理論平均電場,可判斷出樣品的摻雜濃度是否標示正確,並進一步地推算出正確的摻雜濃度。
另外在實驗的過程中發現HBT的頂層材料對PR的量測產生相當大的影響,當頂層材料含有太厚的砷化鎵時,將產生可觀的背景值而影響主要訊號,當頂層含有砷化銦鎵,則幾乎使得PR訊號無法顯現,這可能是由於頂層材料吸收了激發光源,使其無法對內層的內建電場進行調制,本實驗室將對此做進一步分析。
Abstract
This thesis employs photoreflectance spectroscopy (PR) to analyze the distribution of electric fields in InGaP/GaAs NPN heterojunction bipolar transistor (HBT). Two series Franz-Keldysh Oscillations (FKO) in the PR spectra imply that two electric fields may exist in the samples. One locates in the charge depletion region on both sides of the emitter/base interface and the other appears in the charge depletion region across the collector/base interface. The difference between experimental and theoretically expected results is approximately 26% in emitter/base region. This disagreement may results from the piezoelectric field induced by the ordering effect in InGaP. On the other hand the experimentally measured electric field coincides with the theoretically calculated average electric field in collector/base region. By comparing the experimental and theoretically expected electric fields we may judge whether the doping concentration of sample is correct or not and figure out the real doping concentration.
In addition, the cap layer’s material of HBT has significantly effect on the PR signal. Thick GaAs in the cap layer will cause strong background noise and seriously affect the major signals. InGaAs in cap layer will result the PR signal unobservable. When the cap materials are too thick, the pump beam may have been completely absorbed such that no pump beam to modulate those layers beneath the cap layer. Further analysis will be performed in our research.
參考文獻
1. Yuan, J. S., SiGe、GaAs、and InP Hetrojunction Bipolar Transistors, John Wiley and Sons, New York, pp.2-3(1999).
2. Kroemer, H. “Heterostructure Bipolar Transistors and Integrated Circuit,” Proc. IEEE, 70, 13 (1982).
3. Y. M. Hsin, Y. S. Huang, C. C. Fan, C. H. Wang, H.M. Chen and N.Y. Li, Jpn. J. Appl. Phys. 40, 6720 (2001).
4. T. N. Morgan, Phys. Rev. B 34, 2664 (1986).
5. J. C. Bourgoin and A. Mauger, Appl. Phys. Lett. 53, 749 (1988).
6. Huang, Y. S., W. D. Sun, F. H. Pollak, J. L. Freeouf, I. D. Calder, and R. E. Mallard, Appl. Phys. Lett. 73, 214 (1998).
7. Wei, S.-H., A. Zunger, Phys. Rev. B, 57, 8983(1998).
8. O. J. Glembocki, B. V. Shanabrook, in D.G. Seiler and C. Boston (eds), Semiconductors and Semimetals, Vol. 36, Academic Press, New York, 1992 p221-292.
9. A. K. Berry, D. K. Gaskill, G. T. Stauf and Bottka, Appl. Phys. Lett. 58, 2824 (1991).
10. J. Nukeaw, J. Yanagisawa, N. Matsubara, Y. Fujiwara and Y. Takeda, Appl. Phys. Lett. 70, 84 (1997).
11. J. Misiewicz, P. Markiewicz, J. Rebisz, Z. Gumienny, M. Panek, B. Sciana and M. Tlaczala, Phys. Stat. Sol. (b) 183, K43 (1994).
12. H. Shen, P. Parayanthal, Y. F. Liu, and F.H. Pollak, Rev. Sci. Intrum. 58,1429(1987).
13. F. H. Pollak and H. Shen, J. Cryst. Growth 98, 53(1989)
14. H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys. Part 1 35, 5946 (1996).
15. A. S. Lee and P. M. Norris, Rev. Sci. Instrum. 68, 1307 (1997).
16. V. Bellani, G. Guizzetti, L. Nosenzo, E. Reguzzoni, A. Bosacchi and S. Franchi, Superlattices and Microstructures 13, 147 (1993).
17. T. Miyazaki and S. Adachi, Jpn. J. Appl. Phys. Part 1 33, 5817 (1994).
18. S. Ozaki and S. Adachi, J. Appl. Phys. 78, 3380 (1995).
19. H. Shen and M. Dutta, J. Appl. Phys. 78, 2151(1995).
20. H. Shen, and F. H. Pollak, Phys. Rev. B 42, 7097 (1990).
21. S. L. Tyan, Y. C. Wang and J. S. Hwang, Appl. Phys. Lett. 68, 1 (1996).
22. Y. C. Wang, W. Y. Chou, W. C. Hwang, and J. S. Hwang, Solid State commu. 104, 717 (1997).
23. H. Shen, F. H. Pollak, and J. M. Woodall, J. Vac. Sci. Technol., B 7, 804 (1989).
24. H. Shen, Z. Hang, S. H. Pan, F. H. Pollak, T. F. Kuech, J. M. Woodall, and R. N. Sacks, Prodeedings of the 9th International Conference on the Physics of Semiconductors, Warsaw, 1989, ed. by W. Zawadzki (institute of Physics, Polish Academy of Science, Warsaw, 1989) p.1087.
25. O. J. Glembocki, B. V. Shanabrook, in D.G. Seiler and C. Boston (eds), Semiconductors and Semimetals, Vol. 36, Academic Press, New York, 1992 pp221-292.
26. A. K. Berry, D. K. Gaskill, G. T. Stauf and Bottka, Appl. Phys. Lett. 58, 2824 (1991).
27. J. Nukeaw, J. Yanagisawa, N. Matsubara, Y. Fujiwara and Y. Takeda, Appl. Phys. Lett. 70, 84 (1997).
28. J. Misiewicz, P. Markiewicz, J. Rebisz, Z. Gumienny, M. Panek, B. Sciana and M. Tlaczala, Phys. Stat. Sol. (b) 183, K43 (1994).
29. D. E. Aspnes, in M. Balkanski (ed.), Handbook on Semiconductors, Vol. 2, North-Holland, New York, 1980, p. 109; also Surf. Sci., 37, 418 (1973).
30. N. P. Lakshmi and F. G. Thomas, Appl. Phys. Lett. 61, 1081 (1992).
31. D. E. Aspnes, in M. Balkanski, Handbook on Semiconductors, Vol. 2, North-Holland, New York, 1980, p.109; also Surf. Sci, 37, 418(1973).
32. D. E. Aspnes, Phys. Rev. B 10, 4228(1974).
33. T. M. Hsu, Y. C. Tien, N. H. Lu, S. P. Ysai, D. G. Liu and C. P. Lee, J. Appl. Phys. 72, 1065(1992).
34. N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito and D. McIntyre, J. Cryst. Growth, 93, 481(1988).
35. J. S. Hwang, K. I. Lin, H. C. Lin, S. H. Hsu, K. C. Chen, and Y. T. Lu Appl. Phys. Lett., 86, 061103 (2005).
36. H. C. Casey, Jr. M. B. Panish, Hetrostructure Lasers, (New York : Academic Press, 1978) p.207.
37. Ben G. Streetman and Sanjay Banerjee, Solid State Electronic Devices,(Prentice Hall, 2000)p.101.
38. Liu W 1998 Handbook of III-V Heterojunction Bipolar Transistors , (New York: Wiley).
39. A. Lindell, M.Pessa, A. Salokatve, F. Bernardini, R. M. Nieminen, and M. Paalanen, J. Appl. Phys. 82, 3374 (1997).
40. Otfried Madelung, Semiconductors-Basic Data, (Springer, 1996) p.103.
41. R. G. Alonso, A. Mascarenhas, G. S. Horner, K. A. Bertness, S. R. Kurtz, and J. M. Olson, Phys. Rev. B 48, 11833 (1993).
42. P. Ernst, C. Geng, F. Scholz,, H. Schweizer, Yong Zhang and A. Mascarenhas, Appl. Phys. Lett. 67, 2347 (1995).
43. S. Froyen, A. Zunger, and A. Mascarenhas, Appl. Phys. Lett. 68, 2852 (1996).
44. C. J. Lin, “Modulation Spectroscopy Characterization of InGaP/GaAs and InGaP/InGaAsN/GaAs NpN Hetrojunction Bipolar Transistor Structures”, NTUST EE,2001.