| 研究生: |
李明倫 Lee, Ming-Lun |
|---|---|
| 論文名稱: |
氮化鎵系列紫外光偵測器之製作與元件特性分析 Fabrication and Characterization of Gallium Nitride Based Ultraviolet Photodetectors |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin 紀國鐘 Chi, Gou-Chung 張守進 Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 175 |
| 中文關鍵詞: | 氮化鎵 |
| 外文關鍵詞: | GaN |
| 相關次數: | 點閱:105 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前氮化鋁鎵(AlxGa1-xN)及其相關材料已成為紫外光偵測器及場效電晶體的熱門研究材料,這主要是因為氮化鎵是寬能隙材料,可以在高功率及高溫的環境下穩定操作,並具有高崩潰電壓的特性。然而,較大的閘極漏電流往往會影響元件在高偏壓及高溫環境操作下的特性。其中,蕭特基接觸中的漏電流主要是受到蕭特基位障高度(Schottky barrier height)和材料的缺陷密度所影響。所以,為了要降低蕭特基接觸中的漏電流,必須要提高金屬和半導體之間的蕭特基位障高度,而金屬與半導體之間的蕭特基位障高度,除了跟選用的金屬功函數有關之外,也跟最上層半導體表面狀態有很大的關聯。
在本論文的第一部分是探討低溫成長的氮化鎵覆蓋層對蕭特基二極體漏電流的影響。結果發現多了一層低溫成長的氮化鎵覆蓋層之後,可以有效降低氮化鎵蕭特基二極體的漏電流。這是由於低溫成長的氮化鎵覆蓋層可以提高氮化鎵半導體與金屬接觸的蕭特基位障高度,而且對半導體的表面狀態有鈍化(passivation)的作用。之所以認為低溫成長的氮化鎵覆蓋層可以提高金屬與半導體之間的蕭特基位障高度,是由一系列的量測結果所獲得的結論,例如將鎳/金分別鍍在有低溫成長氮化鎵覆蓋層的試片及沒有低溫成長氮化鎵覆蓋層的試片作為蕭特基接觸。實驗結果得到有低溫成長氮化鎵覆蓋層及沒有低溫成長氮化鎵覆蓋層的蕭特基二極體之蕭特基位障高度分別是1.13eV及0.85eV。而之所以認為低溫成長的氮化鎵覆蓋層對半導體的表面狀態有鈍化(passivation)的作用,是由一系列的氮化鋁鎵/氮化鎵異質結構場效電晶體(AlGaN/GaN HFETs)的閘極延遲量測(gate lag measurements)所得到的結果。藉由以上的結果,我們可以將低溫成長的氮化鎵應用在蕭特基二極體紫外光偵測器(Schottky barrier UV photodetectors)及金屬-半導體-金屬紫外光偵測器(metal-semiconductor-metal UV photodetectors)的製作上,來降低元件的漏電流。
在本論文中,我們也研究氮化鋁鎵系列p-i-n紫外光偵測器,為了解決p型氮化鋁鎵(AlxGa1-xN)材料高電阻率的問題,我們以低電阻率的鎂摻雜氮化鋁鎵/氮化鎵超晶格結構(Mg-doped AlGaN/GaN SLS)來取代p型氮化鋁鎵,以降低接觸電阻。
一般來講,為了更進一步提高不受太陽光幅射干擾(solar-blind)的氮化鋁鎵系列p-i-n 紫外光偵測器之偵測率(responsivity),必須製作更寬能隙(Eg >4.43 eV)且具有低電阻率的p型氮化鋁鎵材料作為窗戶層(window layer);然而當鋁含量愈高時,p型氮化鋁鎵材料的電阻率會愈高。傳統的解決方法是利用背面照光來克服p型氮化鋁鎵材料無法高濃度摻雜的問題。在本論文中,我們是利用一層高電子濃度且厚度很薄的氮化銦鎵(n++- In0.3Ga0.7N)與p型氮化鎵形成穿隧層接面(tunneling junction),再接著成長n-i-p的結構於此一穿隧層接面之上,來解決這些問題。在這個元件中,陽極電極是配置在最底層的n型氮化鎵上,使得外加偏壓時,載子會藉由穿隧機制,而呈現類似歐姆接觸的特性(like an “Ohmic contact”) ,使得此一n-i-p結構的紫外光偵測器可以像傳統的p-i-n紫外光偵測器般操作。
Aluminum Gallium nitride (AlxGa1-xN) alloys are highly promising for the application of ultraviolet photodetectors and field-effect transistors operating under high power and high temperature due to a nature of wide band gap. However, large gate leakage current, which is especially operated at high temperature or high bias, is one factor limiting device performance. Leakage current in Schottky contacts (SCs) is strongly dependent on barrier height. To reduce the leakage current in SCs, it is necessary to achieve a high Schottky barrier height (SBH) at the metal/semiconductor interface. In addition to the choice of various contact metals, SBH also strongly depends on the properties of the topmost semiconductor layer. The first phase of the dissertation examined the effect of high-resistivity low-temperature-grown(LTG) GaN cap layer on the leakage current of GaN Schottky barrier diodes(SBDs). The presence of the LTG GaN cap layer was found to effectively reduce the leakage current of GaN SBDs. These results will be discussed in Chapter 4 and they were ascribed to a fact that GaN SBDs with LTG GaN cap layer can induce an enhancement of SBH and/or an effect of passivation on surface defects including threading-dislocation-related (TD related) surface pits. The former case can be clarified by a series of measurements of SBH performed on the GaN Schottky contacts. For example, Ni/Au bi-layer metals deposited on LTG caped samples exhibited a barrier height of around 1.13 eV. In contrast, the barrier height of samples without the LTG cap layer exhibited a barrier height of around 0.85 eV. The effect of passivation on surface defects can be explained by the gate lag measurements performed on AlGaN/GaN HFETs. The AlGaN/GaN HFETs exhibited a significant frequency dispersion on the drain current of FETs if the with LTG cap layer was absent. Based on the aforementioned results, UV photodetectors including Schottky barrier photodetectors and metal-semiconductor-metal (MSM) photodetectors were designed with the LTG GaN cap layer to achieve the reduction of dark current.
For GaN-based p-i-n UV photodiodes, samples used in this dissertation were designed to overcome the inherent high resistivity of p-type AlxGa1-xN. The author applied an low-resistivity Mg-doped AlGaN/GaN SLS structure to GaN -based p-i-n photodiodes to reduce the p-type contact resistance. A detailed study on the electrical and optical properties of these nitride-based p-i-n photodiodes will be discussed herein. In general, to further improve the responsivity of a conventional solar-blind p-i-n photodiode, a wide bandgap (Eg >4.43 eV) and low-resisitivity p-type AlxGa1-xN top layer is necessary. However, the resistivity of p-type AlxGa1-xN layer increases rapidly with increasing the Al content. Fortunately, this problem can be solved by backside illumination. In this dissertation, an inverted structure was designed with a p+/n+ tunneling junction between the p-layer and n-type bottom contact layer to solve this problem. The p+/n+ tunneling junction, with a low-resistivity n++-In0.3Ga0.7N layer associated with a p+-GaN layer deposited on an n-type GaN bottom contact layer, allows the anode electrode contact to be formed directly on the n-type GaN bottom contact layer. When a bias is applied to the device with the aforesaid inverted structure, the tunneling junction will behave like an “Ohmic contact”. Accordingly, an inverted p-i-n UV PD can operate like a conventional device.
References in Capter 1
1. R. Juza and H. Hahn, Z. Anorg. Allgem. Chem. 234, pp. 282 (1938); and 244, pp. 133 (1940).
2. S.N. Mohammad and H. Morkoç, “Progress and Prospects of Group III-V Nitride Semiconductors,” Progress in Quantum Electronics 20(5 and 6), pp.361-525 (1996).
3. W. Seifert, R. Franzheld, E. Buttler, H. Sobotta, and V. Riede, Crystal Res. and Technol. 18, pp. 383 (1983).
4. J.I. Pankove, E.A. Miller and J.E. Berkeyheister, J. Luminescence 5, pp. 84 (1972).
5. J.I. Pankove, J. Luminescence 7, pp. 114 (1973).
6. S.T. Strite and H. Morkoç, “GaN, AlN, and InN: A Review,” J. Vacuum Science and Technology B10, pp. 1237-1266 (1992).
7. M.T. Duffy, C.C. Wang, G’D. O’Clock, S.H. McFarlane III, and P.J. Zanzucchi, “Epitaxial Growth and Piezoelectric Properties of AlN, GaN, and GaAs on Sapphire or Spinel,” J. Elect. Mat. 2, pp.359 (1973).
8. M. Razeghi and A. Rogalski, “Semiconductor Ultraviolet Detectors,” J. Appl. Phys. 79, pp. 7433-7473 (1996).
9. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. 31, pp. 1258 (1992).
10. S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett. 64, pp. 1687(1994).
11. S. Nakamura et al. “Blue InGaN-based laser diodes with an emission wavelength of 450 nm”, Applied Physics Letters 76, pp.22 (2000).
12. G.Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç, G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, “Ultraviolet Photodetectors Based on GaN pi- n and AlGaN(p)-GaN(i)-GaN(n) Structures,” Appl. Phys. Lett. 71(15), pp.2154-2156 (1997).
13. I.J. Fritz and T.J. Drummond, “AlN-GaN Quarter-wave Reflector Stack Grown by Gas-source MBE on (100) GaAs,” Electron. Lett. 31, pp. 68-69 (1995).
14. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class Highbrightness InGaN/AlGaN Double-heterostructure Blue Lightemitting Diodes,” Appl. Phys. Lett. 64, pp. 1687-1689 (1994).
15. H. Morkoç and S.N. Mohammad, “High Luminosity Gallium Nitride Blue and Blue-Green Light Emitting Diodes,” Science Magazine 267, pp. 51-55 (1995).
16. H. Morkoç and S.N. Mohammad, “Light Emitting Diodes,” in Wiley Encyclopedia of Electrical Engineering and Electronics Engineering, J. Webster, ed. (John Wiley and Sons, New York, (1999).
17. S. Nakamura, M. Senoh, N. Nagahama, N. Iwara, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaNBased Laser Diodes with Modulation-Doped Strained-Layer Superlattices,” Jpn. J. Appl. Phys. 38, L1578 (1997).
18. S.M.SZE ‘SEMICONDUCTOR DEVICES Physics and Technology’ 2nd edition pp. 351(2001)
References in Capter 2
1. C. Youtsey, I. Adesida, L. T. Romano and G. Bulman, “Smooth n-type GaN surface by Photoenhanced wet etching,” Appl. Phys. Lett., Vol.72, pp.56-58, 1998.
2. R. F. Davis, “III-V Nitrides for Electronic and Optoelectronic Applications,” Proc.IEEE, Vol.79, pp.702-712, 1992.
3. R. A. Metzger, Compd. Semicond., Vol.26, p.78, 1995.
4. W. J. Lee and H. S. Kim, “Facet formation of a GaN-based device using chemically assisted ion beam etching with a photoresist mask,” J. Vac. Sci. & Technol., Vol.17, pp.1230-1232, 1999.
5. S. M. Sze, “Semiconductor Devices Physics and Technology”, Ch. 10, Fig 19
References in Chapter 3
1. S.J. Pearton, J. C. Zolper, R. J. Shul and F. Ren,’’ GaN: Processing, defects, and devices’’, J. Appl.Phys, 86, 1(1999)
2. H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda,’’ Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer’’ , Appl. Phys. Lett., 48 ,353(1986)
3. S. Nakamura, Jpn.’’ GaN Growth Using GaN Buffer Layer’’ , J. Appl. Phys., 30, L1705(1991)
4. P. Stumm and D. A. Drabold,’’Can Amorphous GaN Serve as a Useful Electronic Material?’’ , Phys. Rev. Lett., 79, 677(1997)
5. C. J. Kao, J. K. Sheu, W. C. Lai, M. L. Lee, M. C. Chen, and G. C. Chi,’’ Effect of GaN cap layer grown at a low temperature on electrical characteristics of Al0.25Ga0.75N/GaN heterojunction field-effect transistors’’, Appl. Phys. Lett.V85, 1430(2004)
6. M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen,C. J. Kao, J. M. Tsai and G. C. Chi,”GaN Schottky barrier photodetectors with a low-temperature GaN cap layer” , Appl. Phys. Lett, vol.82, pp.2913-2915, (2003).
7. S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi, and J. M. Tsai, ‘’GaN metal-semiconductor-metal photodetectors with low-temperature-GaN cap layers and ITO metal contacts’’, IEEE Electron Device Letters, Vol.24, 212,(2003)
8. S. S. Chen,” Material Characterizations of Low temperature grown GaN” master thesis, National Central Univrstity(2003)
9. D. C. Look D. C. Walters, M. O. Manasreh, J. R. Sizelove, C. E. Stutz and K. R. Evans, “Anomalous Hall-effect results in low-temperature molecular-beam-epitaxial GaAs: Hopping in a dense EL2-like band”, Phys. Rev. B42, pp.3578-3581, (1990).
10. J. K. Sheu and G. C. Chi,’’ The doping process and dopant characteristics of Ga”, Journal of Physics , Vol .14, R657 (2002).
11. L. B. Rowland, K. Doverspike and D. K. Gaskill, ‘’Silicon doping of GaN using disilane’’, Appl. Phys. Lett., Vol. 66, 1495, (1995)
12. J. K. Sheu, M. L. Lee , C. J. Tun, C. J. Kao, L. S. Yeh, C. C. Lee, S. J. Chang and G. C. Chi, ” Characterization of Si implants in p-type GaN”, IEEE J. Selected topics in Quantum Electronics, Vol.8, 767, (2002)
13. N. F. Mott and W. D. Twose, ’’ The theory of impurity conduction ‘’, Adv. Phys., Vol. 10, 107, (1961)
14. E. F. Schubert, ”Doping in III-V Semiconductors”, pp.41(Cambridge University Press).
15. J. C. Zolper, R. G. Wilson, S. J. Pearton, and R. A. Stall,’’ Ca and O ion implantation doping of GaN’’ , Appl. Phys. Lett. Vol.68, 1945 (1996).
16. J. I. Pankove, “Perspective on gallium nitride” , Mater. Res. Soc. Symp. Proc. 162 (1990) 515
17. E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Muñoz, and F. Cussó, ‘’High-performance GaN p-n junction photodetectors for solar ultraviolet applications’’, Semicond. Sci. Technol. 13 (1998) 1042.
18. G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, and U. K. Mishra,’’ High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN’’ , Appl. Phys. Lett. 75 (1999) 247
19. E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M.Razeghi, ‘’High-quality visible-blind AlGaN p-i-n photodiodes’’, Appl.Phys. Lett. 74 (1999) 1171.
20. A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D.Kuksenkov, and H. Temkin, ‘’Low noise p- -n GaN ultraviolet photodetectors’’, Appl. Phys. Lett. 71 (1997) 2334.
21. Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z.Anwar, M. Asif Khan, D. Kuksenkov, and H. Temkin, ‘’Schottky barrier detectors on GaN for visible–blind ultraviolet detection’’, Appl. Phys.Lett. 70 (1997) 2277.
22. Z. C. Huang, J. C. Chen, and D. Wickenden, “Characterization of GaN using thermally stimulated current and photocurrent spectroscopies and its application to UV detectors”, J. Cryst. Growth, vol. 170, pp. 362-367, 1997.
23. C. H. Chen, S. J. Chang, Y. K. Su, , G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen,”GaN Metal-Semiconductor-Metal Ultraviolet Photodetectors With Transparent Indium-Tin-Oxide Schottky Contacts”, IEEE Photon. Technol. Lett., vol. 13, pp. 848-850, 2001.
24. D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz and M. Razeghi,”High speed, low noise metal-semiconducror-metal ultraviolet photodetectors based on GaN” , Appl. Phys. Lett., vol. 74, pp.762-764, 1999 and references therein.
25. X. A. Cao, S. J. Pearton, G. Dang, A. P. Zhang, F. Ren, and J. M. Van Hove, “Effects of interfacial oxides on Schottky barrier contacts to n- and p-type GaN”, Appl. Phys. Lett., vol.75, pp. 4130-4132, 1999.
26. Q. Z. Liu, L. S. Yu, S. S. Lau, J. M. Redwing, N. R. Perkins, and T. F. Kuech, “Thermally stable PtSi Schottky contact on n-GaN”, Appl. Phys. Lett., vol.70, pp. 1275-1277,1997.
27. Lei Wang, M. I. Nathan, T-H. Lim, M. A. Khan, and Q. Chen, ‘’High barrier height GaN Schottky diodes: Pt/GaN and Pd/GaN’’, Appl. Phys. Lett. 68 (1996) 1267
28. C. T. Lee, Y. J. Lin, and D. S. Liu, ‘’Schottky barrier height and surface state density of Ni/Au contacts to (NH4)2Sx-treated n-type GaN’’, Appl. Phys. Lett. 79, 2573 (2001)
29. Jong Kyu Kim, Ho Won Jang, Chang Min Jeon, and Jong-Lam Lee,’’ GaN metal–semiconductor–metal ultraviolet photodetector with IrO2 Schottky contact’’ , Appl. Phys. Lett. 81 (2002) 4655
30. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou and C. M. Chang, “Effects of Thermal Annealing on the ITO Schottky Contacts of n-GaN “, Appl. Phys. Lett. Vol.72, pp.3317-3319, 1998.
31. S. Lodha, D. B. Janes and N. P. Chen,’’ Fermi level unpinning in ex situ Schottky contacts on n-GaAs capped with low-temperature-grown GaAs’’ , Appl.. Phys. Lett. 80 (2002) 4452
32. L. W. Yin, Y. Hwang, J. H. Lee, Robert M. Kolabas, R. J. Trew and U. K. Mishra,” Improved breakdown voltage in GaAs MESFET’s utilizing suface layers of GaAs grown at a low temperature by MBE”, IEEE Electron. Device. Lett.,vol.11, pp.561-563,1990.
33. J. K. Sheu, C. J. Kao, M. L. Lee, W. C. Lai, L. S. Yeh, G. C. Chi, S. J. Chang, Y. K. Su and J. M. Tsai,”Low-dark current, high-sensitivity metal-semiconductor-metal ultraviolet photodetectors based on GaN with low-temperature GaN intermediate layer”, Journal Electronic Materials, vol.32, pp.400-402 (2003) (SCI).
34. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu and W. C. Hung,” Inductively Coupled Plasma Etching of GaN using Cl2/Ar and Cl2/N2 gases”, J. Appl. Phys., vol. 85, pp.1970-1974, (1999).
35. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, W. C. Hung, J. S. Bow and Y. C. Yu, “ The formation of Ti / Al Ohmic contact on etched n-GaN surfaces”, J. Vac. Sci & Tech, B 18 (2000) 729.
36. M. Lampert and P. Mark, “Current Injection in Solids” (Academic, New York, 1970)
37. E. Monroy, F. Calle, E. Munoz, F.Omnes, B. Beaumont and P. Gibart,” Visible-Blindness in Photoconductive and Photovoltaic Algan Ultraviolet Detectors”, Journal Electronic Materials, vol 28, iss 3, pp 240-245(1999) and references therein.
38. J. I. Pankove, “Perspective on gallium nitride” , Mater. Res. Soc. Symp. Proc., vol.162, pp.515-520, 1990.
39. E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M.Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes”, Appl.Phys. Lett.,vol.74, pp.1171-1173,1999.
40. C. J. Collins, U. Chowdhury, M. M. Wong, B. Yang, A. L. Beck, R. D. Dupuis, and J. C. Campbell,” Improved solar-blind detectivity using an AlxGa1-xN heterojunction p-i-n photodiode”, Appl.Phys. Lett., vol.80, pp.3754-3756,2002.
41. G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, and U. K. Mishra, “High performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN,” Appl.Phys. Lett., vol. 75, pp. 247-249, July, 1999.
42. Necmi Biyikli, Ibrahim Kimukin, Tolga Kartaloglu ,Orhan Aytur, and Ekmel Ozbay,” High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts”, Appl.Phys. Lett., vol.82, pp.2344-2346,2003.
43. S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, and M. E. Levinshtein, V. Adivarahan, J. Yang, G. Simin, and M. Asif Khan, ” Low-frequency noise in Al0.4Ga0.6N-based Schottky barrier photodetectors”, Appl.Phys. Lett., vol.79, pp.866-868,2001.
44. Lei Wang, M. I. Nathan, T-H. Lim, M. A. Khan, and Q. Chen, “High barrier height GaN Schottky diodes: Pt/GaN and Pd/GaN”, Appl. Phys. Lett., vol.68 pp. 1267-1268,1996.
45. C. T. Lee, Y. J. Lin, and D. S. Liu, “Schottky barrier height and surface state density of Ni/Au contacts to (NH4)2Sx-treated n-type GaN”, Appl. Phys. Lett. vol.79, pp.25732575, 2001.
46. Jong Kyu Kim, Ho Won Jang, Chang Min Jeon, and Jong-Lam Lee, “GaN metal–semiconductor–metal ultraviolet photodetector with IrO2 Schottky contact”, Appl. Phys. Lett., vol.81, pp.4655-4657,2002.
47. S. Lodha, D. B. Janes and N. P. Chen, “Fermi level unpinning in ex situ Schottky contacts on n-GaAs capped with low-temperature-grown GaAs”, Appl. Phys. Lett., vol.80, pp.4452-4454, 2002.
48. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, W. C. Hung, J. S. Bow and Y. C. Yu, “ The formation of Ti / Al Ohmic contact on etched n-GaN surfaces”, J. Vac. Sci & Tech, B.18 , pp.729-732, 2000.
49. K. Kim, W. R. L. Lambrecht, B. Segall, and M. V. Schilfgaarde,” Effective masses and valence-band splittings in GaN and AlN” , Phys. Rev. B 56, pp.7363-7375, 1997.
50. A. T. Ping, A. C. Schmitz, M. A. Khan, and I. Adeaida, “Characterisation of Pd Schottky barrier on n-type GaN”, Electron. Lett. vol.32, pp.68-70,1996.
51. J. D. Guo, F. M. Pan, M. S. Feng, R. J. Guo, P. F. Chuo and C. Y. Chang, “Schottky contact and the thermal stability of Ni on n-type GaN”, J. Appl. Phys., vol.80, pp.1623, 1996.
52. P. Hacke, T. Detchprohm, K. Hiramatsu, and N. Sawaki,” Schottky barrier on n-type GaN grown by hydride vapor phase epitaxy”, Appl. Phys. Lett. vol.63, pp.2676-2678, 1993.
53. S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics”, Appl. Phys. Lett. vol.49, pp.85-87,1986.
54. H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance”, J. Appl. Phys. vol.50, pp.5052-5053, 1979.
55. M. W. Wang, J. O. McCaldin, J. F. Swenberg, T. C. McGill, and R. J.Hauenstein, “Schottky-based band lineups for refractory semiconductors” , Appl. Phys. Lett. vol.66, pp.1974-1976, 1995.
56. S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981,Chap. 5.
57. E. T. Yu, X. Z. Dang, L. S. Yu, D. Qiao, P. M. Asbeck, S. S. Lau, G. J. Sullivan, K. S. Boutros and J. M. Redwing ,“Schottky barrier engineering in III–V nitrides via the piezoelectric effect”, Appl. Phys. Lett. vol.73, pp.1880-1882, 1998.
58. G. S. Paige and H. D. Rees, “Absorption Edge of GaAs and Its Dependence on Electric Field”, Phys. Rev. Letters, Vol.16, pp.444-446, 1966.
References in Chapter 4
1. X. A. Cao, S. J. Pearton, G. Dang, A. P. Zhang, F. Ren, and J. M. Van Hove,” Effects of interfacial oxides on Schottky barrier contacts to n- and p-type GaN”, Appl. Phys. Lett. Vol.75,4130 (1999).
2. Q. Z. Liu, L. S. Yu, S. S. Lau, J. M. Redwing, N. R. Perkins, and T. F. Kuech,” Thermally stable PtSi Schottky contact on n-GaN”, Appl. Phys. Lett. Vol.70, 1275 (1997).
3. Lei Wang, M. I. Nathan, T-H. Lim, M. A. Khan, and Q. Chen,” High barrier height GaN Schottky diodes: Pt/GaN and Pd/GaN”, Appl. Phys. Lett. Vol.68,1267 (1996).
4. Ching-Ting Lee, Yow-Jon Lin, and Day-Shan Liu,” Schottky barrier height and surface state density of Ni/Au contacts to (NH4)2Sx-treated n-type GaN”, Appl. Phys. Lett. Vol.79, pp.2573-2575(2001) and references therein.
5. Jong Kyu Kim, Ho Won Jang, Chang Min Jeon, and Jong-Lam Lee,” GaN metal–semiconductor–metal ultraviolet photodetector with IrO2 Schottky co”tact", Appl. Phys. Lett. Vol.81, 4655(2002).
6. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, and C. M. Chang, ” Effects of thermal annealing on the indium tin oxide Schottky contacts of n-GaN ”, Appl. Phys. Lett. Vol.72, 3317 (1998).
7. Jihyun Kim, F. Ren, A. G. Baca and S. J. Pearton,” Thermal stability of WSix and W Schottky contacts on n-GaN”, Appl. Phys. Lett. Vol.82,3263(2003).
8. X. A. Cao, S. J. Pearton, F. Ren, and J. R. Lothian,” Thermal stability of W and WSix contacts on p-GaN”, Appl. Phys. Lett. Vol.73, 942(1998).
9. S. Lodha, D. B. Janes and N. P. Chen,” Fermi level unpinning in ex situ Schottky contacts on n-GaAs capped with low-temperature-grown GaAs”, Appl.. Phys. Lett. Vol.80, 4452 (2002).
10. L. W. Yin, Y. Hwang, J. H. Lee, Robert M. Kolabas, Robert J. Trew and U. K. Mishra,” Improved breakdown voltage in GaAs MESFETs utilizing surface layers of GaAs grown at a low temperature by MBE”, IEEE Electron. Device. Lett. Vol.11,561 (1990).
11. J. K. Sheu, C. J. Kao, M. L. Lee,W. C. Lai, L. S. Yeh, G. C. Chi, S. J. Chang, Y. K. Su and J. M. Tsai,” Nitride-Based Ultraviolet Metal-Semiconductor-Metal Photodetectors with a Low-Temperature GaN Layer”, Journal Electronic Materials, Vol.32, 400(2003).
12. M. Lampert and P. Mark, Current Injection in Solids (Academica, New York, 1970)
13. A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D.Kuksenkov, and H. Temkin,” Low noise p- -n GaN ultraviolet photodetectors”, Appl. Phys. Lett. Vol.71, 2334 (1997).
14. Ching-Ting Lee, Yow-Jon Lin, and Day-Shan Liu,” Schottky barrier height and surface state density of Ni/Au contacts to (NH4)2Sx-treated n-type GaN”, Appl. Phys. Lett. Vol.79, pp.2573-2575(2001) and references therein.
15. J. K. Sheu, M. L. Lee, Y. K. Su, S. J. Chang, and W. C. Lai, will published elsewhere.
16. A. C. Schmitz, A.T. Pong, M. A. Khan, Q. Chen, J. W. Yang, and I. Adesida, J. Electro. Mater., Vol.27, 255(1998), and references therein.
17. Q. Z. Liu, L. S. Yu, F. Deng, S. S. Lau and J. M. Redwing,” Ni and Ni silicide Schottky contacts on n-GaN”, J. Appl. Phys., Vol.84, 881(1998) and references therein.
18. J. K. Sheu, M. L. Lee, and W. C. Lai,” Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes”, Appl. Phys. Lett. Vol.86, 052103(2005) and references therein.
19. Jihyun Kim, F. Ren, A. G. Baca and S. J. Pearton,” Thermal stability of WSix and W Schottky contacts on n-GaN”, Appl. Phys. Lett. Vol.82, 3263(2003).
20. S. M, Sze, “Physics of semiconductor Devices” (Wiley, New York, 1983, pp.270.
21. V. M. Bermudez,” Simple interpretation of metal/wurtzite–GaN barrier heights”, J.Applied.Physics,Vol.86, pp.1170-1171(1999).
22. V. M. Bermudez, ”Study of the growth of thin Mg films on wurtzite GaN surfaces” Surf. Sci. Vol.417, pp.30- 40(1998).
23. T. U. Kampen and W. Monch,” Barrier heights of GaN Schottky contacts “, Appl.Surf.Sci.Vol.117/118, pp.388-393(1997).
24. A. M. Cowley and S. M. Sze,” Surface States and Barrier Height of Metal-Semiconductor Systems”, J. Appl. Phys. Vol.36, pp.3212-321 4(1965).
25. V. M. Bermudez, D. D. Koleske, and A. E. Wickenden,“ The dependence of the structure and electronic properties of wurtzite GaN surfaces on the method of preparation “, Appl. Surf. Sci.Vol.126, pp.69-82 (1998).
26. E. V. Kalinina, N. I. Kuznetsov, V. A. Dmitriev, K. G. Irvine, and C. H.Carter, Jr.,” Schottky Barriers on n-GaN Grown on SiC “, J. Electron. Mater. Vol.25, pp.831-834(1996).
27. Lei Wang, M. I. Nathan, T-H. Lim, M. A. Khan, and Q. Chen,” High barrier height GaN Schottky diodes: Pt/GaN and Pd/GaN”, Appl. Phys. Lett. 681267 (1996)
28. P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra,” Electrical characterization of GaN p-n junctions with and without threading dislocations”, Appl. Phys. Lett. 73, 975 (1998)
29. E. J. Miller, X. Z. Dang, and E. T. Yu,” Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors”, J. Appl. Phys. 88, 5951(2000).
30. F. Zhang, D. C. Reynolds, and D. C. Look,” Changes in Electrical Characteristics Associated with Degradation of InGaN Blue Light-Emitting Diodes “, J. Electron. Mater. 29, 448-451(2000)
31. D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska, and M. A.Khan,” Origin of conductivity and low-frequency noise in reverse-biased GaN p-n junction”, Appl. Phys. Lett. 72, 1365(1998)
32. J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell,” Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN”, J. Appl. Phys.,83, 6148(1998).
33. E. J. Miller, D. M. Schaadt, E. T. Yu, C. Poblenz, C. Elsass, and J. S. Speck,” Reduction of reverse-bias leakage current in Schottky diodes on GaN grown by molecular-beam epitaxy using surface modification with an atomic force microscope”, J. Appl. Phys. 91, 9821 (2002).
34. P. J. Hansen, Y. E. Strausser, A. N. Erickson, E. J. Tarsa, P. Kozodoy, E. G. Brazel, J. P. Ibbetson, U. Mishra,V. Narayanamurti, S. P. DenBaars, and J. S. Speck,” Scanning capacitance microscopy imaging of threading dislocations in GaN films grown on (0001) sapphire by metalorganic chemical vapor deposition”, Appl. Phys. Lett. 72, 2247(1998)
35. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu and W. C. Hung,” Inductively coupled plasma etching of GaN using Cl2/Ar and Cl2/N2 gases”, J. Appl. Phys., 85, 1970(1999)
36. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, W. C. Hung, J. S. Bow and Y. C. Yu, “Investigation of the mechanism for Ti/Al ohmic contact on etched n-GaN surfaces” J. Vac. Sci & Tech, B.18, pp.729-732 (2000).
37. E.G.Brazel, M.A.Chin and V.Narayanamurti, “Direct observation of localized high current densities in GaN films”, Appl. Phys. Lett. 74, 2367(1999)
38. Hierro, D. Kwon, and S. A. Ringela)M. Hansen, J. S. Speck, U. K. Mishra, and S. P. DenBaars, “Optically and thermally detected deep levels in n-type Schottky and p+-n GaN diodes” ,Appl. Phys. Lett. 76, 3064(2000).
39. L.-W. Yin, J. P. Ibbetson, M. M. Hashemi, A. C. Gossard, U. K. Mishra, Y. Hwang, T. Zhang, and R. M. Kolbas, “Investigation of the electronic properties of in situ annealed low-temperature gallium arsenide grown by molecular beam epitaxy” , Appl. Phys. Lett. 60, 2005 (1992)
40. H. C. Tseng , “Characteristics of WSix Schottky contact on n-GaN” master thesis, National Central Univrstity (2004)
References in Capter 5
1. D.Walker, E. Monroy, P. Kung, J.Wu, M.Hamilton, F.J.Sanchez, J. Diaz, and M.Razeghi,” High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN”, Appl. Phys. Lett., vol. 74, pp. 762-764, 1999.
2. A.Osinsky, S.Gangopadhyay, R.Gaska, B.Williams, M.A.Khan, D.Kuksenkov, and H.Temkin,” Low noise p- -n GaN ultraviolet photodetectors”, Appl. Phys. Lett., vol. 71, pp. 2334-2336, 1997.
3. G.Parish, S.Keller, P.Kozodoy, J.P.Ibbetson, H.Marchand, P.T.Fini, S.B. Fleischer, S.P.DenBaars, U.K.Mishira, and E.J.Tarsa,” High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., vol. 75, pp. 247-249, 1999.
4. V.Adivarahan, G. Simin, J.W. Yang, A. Lunev, M.A. Khan, N. Pala, M. Shur, and R.Gaska,” SiO2-passivated lateral-geometry GaN transparent Schottky-barrier detectors”, Appl. Phys. Lett., vol. 77, pp. 863-865, 2000.
5. J.C.Carrano, D.J.H.Lambert, C.J.Eiting, C.J.Collins, T. Li, S. Wang, B. Yang, A.L.Beek, R.D.Dupais, and J.C.Campbell,” GaN avalanche photodiodes”, Appl. Phys. Lett., vol. 76, pp. 924-926, 2000.
6. J.M.van Hove, R.Hickman, J.J.Klaassen, P.P.Chow, and P.P.Ruden, “Ultraviolet-sensitive, visible-blind GaN photodiodes fabricated by molecular beam epitaxy”, Appl. Phys. Lett., vol. 70, pp. 2282-2284, 1997.
7. G.M.Smith, J.M.Redwing, R.P.Vaudo, E.M.Ross, J.S.Flynn, and V.M.Phanse,” Substrate effects on GaN photoconductive detector performance”, Appl. Phys. Lett., vol. 75, pp. 25-27, 1999.
8. J.T.Torvik, J.I.Pankove, S.Nakamura, I.Grzegory, and S.Porowski,” The effect of threading dislocations, Mg doping, and etching on the spectral responsivity in GaN-based ultraviolet detectors”, J. Appl. Phys., vol. 86, pp. 4588-4593, 1999.
9. M.Razeghi and A.Rogalski, “semiconductor ultraviolet detectors,” J. Appl. Phys., vol. 79, pp. 7433-7472, 1996.
10. M.P.Ulmer, M.Razeghi, and E.Bigan, in Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Proc. vol. 2397, edited by M.Razeghi, Y.S.Park, and G.L.Witt (SPIE Optical Engineering, Bell-ingham,1995), pp. 210-217.
11. E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M.Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes”, Appl.Phys. Lett., Vol. 74, pp. 1171–1173, 1999.
12. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu and W. C. Hung, “Inductively coupled plasma etching of GaN using Cl2/Ar and Cl2/N2 gases”, J. Appl. Phys., vol. 85, pp. 1970-1974, 1999.
13. P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Electrical characterization of GaN p-n junctions with and without threading dislocations”, Appl. Phys. Lett., Vol.73, pp.975-977,1998.
14. David Wood, “Optoelectronic Semiconductor Devices”, London: Prentice Hall, 1994, pp. 306-311.
15. S.M.Sze, “Physics of Semiconductor Devices, 2nd ed.” New York: Wiley, 1981, pp. 754-760.
16. D. J. H. Lambert, M. M. Wong, U. Chowdhury, C. Collins, T. Li, H. K. Kwon, B. S. Shelton, T. G. Zhu, J. C. Campbell, and R. D. Dupuis” Back illuminated AlGaN solar-blind photodetectors”, Appl. Phys. Lett., Vol.77, pp.1900-1902,(2000)
17. J. K. Sheu, G. C. Chi, and M. J. Jou, “Low-operation voltage of InGaN/GaN light-emitting diodes by using a Mg-doped Al0.15Ga0.85N/GaN superlattice “IEEE Electron Device Letters, Vol.22, pp.160-162, 2001 and references therein.
18. J. K. Sheu and G. C. Chi,” Doping process and dopant characteristics of GaN”, Journal of Physics, Vol.14, No.22, pp.R657-R702, 2002.
19. N. Biyikli, I. Kimukin, O. Aytur, and E. Ozbay, “Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity”, IEEE Photonics Technology Letters, Vol. 16, no. 7, pp.1718-1720, 2004 and references therein.
20. P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra,” Electrical characterization of GaN p-n junctions with and without threading dislocations”, Appl. Phys. Lett., Vol.73, 975 (1998)
21. E.G.Brazel, M.A.Chin and V.Narayanamurti, “Direct observation of localized high current densities in GaN films”, Appl. Phys. Lett., Vol.74, pp.2367-2369,1999.
22. S. Yamaguchi, M. Kosaki, Y. Watanabe, Y. Yukawa, S. Nitta, H. Amano, and I. Akasaki,” Metalorganic vapor phase epitaxy growth of crack-free AlN on GaN and its application to high-mobility AlN/GaN superlattices”, Appl. Phys. Lett., 79, 3062(2001)
23. J. Blasing, A. Reiher, A. Dadgar,) A. Diez, and A. Krost, “The origin of stress reduction by low-temperature AlN interlayers “,Appl. Phys. Lett.,81, 2722(2002)