簡易檢索 / 詳目顯示

研究生: 謝亞璇
Hsieh, Ya-Hsuan
論文名稱: 利用PSInSAR與GPS探討位於萊特島菲律賓斷層潛移至鎖定過渡帶之運動特性
Transition from creeping to locked segments of the Philippine fault in the Leyte Island using PSInSAR and GPS observations
指導教授: 景國恩
Ching, Kuo-En
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 108
中文關鍵詞: 萊特斷層永久性散射體差分干涉法GPS
外文關鍵詞: Leyte segment of the Philippine fault, PSInSAR, GPS
相關次數: 點閱:94下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用永久性散射體差分干涉法(PSInSAR)分析ERS 與ALOS衛星影像,同時亦採用GPS速度場進行分析菲律賓斷層鎖定至潛移過渡帶之活動特性,藉此來了解走向滑移斷層累積與釋放能量之機制。依據萊特島PSInSAR升軌道及降軌道之跨斷層LOS速度剖面分析指出,菲律賓斷層在萊特島由北至南大致可分為四個區段,由距離萊特島嶼最北端(0 km)起算,可分為A區(0-40 km)、B區(40-60 km)、C區(70-100 km)及D區(110-140 km)。A區ERS降軌道與ALOS升、降軌道跨斷層速率變化分別為22.7 mm/yr, 2.5 mm/yr及7.8 mm/yr,為潛移區段;B區之ERS降軌道與ALOS升、降軌道跨斷層速率變化皆趨近於零,故判定是鎖定區段;C區ERS降軌道與ALOS之升、降軌道跨斷層速率變化分別為31.7 mm/yr, 2.3 mm/yr及3.7 mm/yr;D區之ERS降軌道與ALOS升、降軌道跨斷層速率變化皆趨近於零,故亦判定是鎖定區段。本研究PSInSAR成果顯示北部萊特島之潛移區段分布與前人研究之野外調查成果相符合。然而,本研究PSInSAR成果與前人研究之InSAR與野外調查成果皆尚未發現南部萊特島的潛移證據。此外,跨越菲律賓斷層之GPS速度剖面分析可得知,菲律賓斷層為左移走向滑移斷層,其速率差約為34 mm/yr,與過去26 ± 10 mm/yr之斷層滑移速率評估結果大致上符合。最後,本研究利用四元樹切割(quadtree)有效降低PSInSAR成果之PS點數量,以未來應用於塊體模型同時逆推PSInSAR成果與GPS速度場,推斷出菲律賓斷層萊特段之幾何參數及其斷層滑移量分布情形,以對應斷層累積與釋放之能量盈虧,並加以進行應力分析,了解具潛力發生地震之位置以預防災害。

    We analyze the data from Persistent Scatterers Interferometry (PSInSAR) and GPS data to understand the kinematic characteristics of the transition from creeping to locked segments of the Philippine strike-slip fault in the Leyte Island. Because the accumulation of seismic moment may be released by fault creep, analysis of fault kinematics also helps us to re-evaluate the earthquake hazard. PSInSAR technique is used for analyzing ERS and ALOS satellite images. According to the characteristics of ascending and descending LOS (line of sight) velocity profiles, the Philippine fault in the Leyte Island can be divided into four segments from north to south: A region (0-40 km), B region (40-60 km), C region (70-100 km) and D region (110-140 km). Regions A and C are proposed to be creeping segments, while regions B and D are locked segments. In region A, the velocity differences across the Philippine fault are about 22.7 mm/yr, 2.5 mm/yr, 7.8 mm/yr in ERS descending, ALOS ascending, and ALOS descending velocity profiles respectively. In region C, the velocity differences across the Philippine fault are about 31.7 mm/yr, 2.3 mm/yr, 3.7 mm/yr in ERS descending, ALOS ascending, and ALOS descending velocity profiles. The distribution of creeping segments of the Philippine fault in northern Leyte derived from PSInSAR is similar to the field surveys in previous studies. However, in the southern part of Leyte, no creeping evidence is shown by InSAR study and field investigations so far. In addition, GPS velocity field indicates that the Philippine fault acts as left-lateral strike-slip faulting. The velocity difference across the fault is about 34 mm/yr, which consistents with the previous GPS measurements, 26 ± 10 mm/yr. We apply the quadtree algorithm for modeling application, the block model will be adopted to invert the PSInSAR and GPS simultaneously for the fault geometry parameters and slip distribution of the Leyte segment of the Philippine fault. From the modeling results, we will infer the earthquake potential to prevent from the disasters.

    摘要 I Abstract II Acknowledgments III Contents IV List of Tables VI List of Figures VII 1. Introduction 1 1.1 Motivation and Purpose 1 1.2 Geological Background 4 1.2.1 Stratigraphy 7 1.2.2 Structure 11 1.2.3 Volcano 15 1.2.4 Earthquake 17 2. Synthetic Aperture Radar Interferometry 21 2.1 Synthetic Aperture Radar 21 2.2 Interferometry Synthetic Aperture Radar 25 2.3 Differential Interferometry Synthetic Aperture Radar 27 2.4 Persistent Scatterers Interferometry (PSInSAR) 30 2.1.1 Phase Stability Estimation 33 2.1.2 PS Selection 36 2.1.3 Phase Unwrapping and Displacement Estimation 37 2.5 Results and Other Data 39 2.5.1 ERS 40 2.5.2 ALOS 67 2.5.3 LOS Velocity Profile analysis 68 3. Quadtree Algorithm for Block Model 82 4. Discussion 87 4.1 Fault Property of the Leyte Fault Segment 87 4.2 Relation between PSInSAR and GPS Observations 92 4.3 Compared with Earthquakes 102 5. Conclusions 103 6. References 104

    Allen, C. R. (1962). Circum-Pacific faulting in the Philippines-Taiwan region. Philippine Geologist, 16(4), 122-145.
    Angelier, J., Chu, H. T., Lee, J. C., & Hu, J. C. (2000). Active faulting and earthquake risk: The Chihshang Fault case, Taiwan. Journal of Geodynamics, 29, 151-185.
    Aurelio, M. A. (2000). Shear partitioning in the Philippines: constraints from Philippine Fault and global positioning system data. Island Arc, 9(4), 584-597.
    Aurelio, M. A., Barrier, E., Rangin, C., & Müller, C. (1991). The Philippine Fault in the late Cenozoic tectonic evolution of the Bondoc-Masbate-N. Leyte area, central Philippines. Journal of Southeast Asian Earth Sciences, 6(3), 221-238.
    Aurelio, M. A., Peña, R. E., & Taguibao, K. J. L. (2013). Sculpting the Philippine archipelago since the Cretaceous through rifting, oceanic spreading, subduction, obduction, collision and strike-slip faulting: Contribution to IGMA5000. Journal of Asian Earth Sciences, 72, 102-107.
    Bacolcol, T. C. (2003). Etude géodésique de la faille Philippine dans les Visayas. Paris 6.
    Bacolcol, T. C., Barrier, E., Duquesnoy, T., Aguilar, A., Jorgio, R., Cruz, R. d. l., & Lasala, M. (2005). GPS constraints on Philippine fault slip rate in Masbate Island, central Philippines. Journal of the Geological Society of the Philippines, 60, 1-7.
    Barrier, E., Huchon, P., & Aurelio, M. (1991). Philippine fault: a key for Philippine kinematics. Geology, 19(1), 32-35.
    Bautista, M. L. P., & Oike, K. (2000). Estimation of the magnitudes and epicenters of Philippine historical earthquakes. Tectonophysics, 317(1), 137-169.
    Besana, G., & Ando, M. (2005). The central Philippine fault zone: Location of great earthquakes, slow events and creep activity. Earth, planets and space, 57(10), 987-994.
    Bruder, J., Carlo, J., Gurney, J., & Gorman, J. (2003). IEEE Standard for Letter Designations for Radar-Frequency Bands. IEEE Aerospace & Electronic Systems Society, 1-3.
    Cardwell, R., Isaacks, B., & Karig, D. (1980). The spatial distribution of earthquakes, focal mechanism solutions, and subducted lithosphere in the Philippine and northeastern Indonesian islands. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, 1-35.
    Catane, J., Kanbara, H., Obara, K., Sugiwara, N., Hirose, K., Olivar, R., Salvador, J., Lituanas, M., Dupio, A., & Lanuza, L. (2000). Deformation in the Leyte Geothermal Production Field, Philippines Between 1991 and 1999. Proceedings World Geothermal Congress, Japan.
    Chan, Y. K., & Koo, V. C. (2008). An introduction to synthetic aperture radar (SAR). Progress In Electromagnetics Research B, 2, 27-60.
    Chang, C.-P., Yen, J.-Y., Hooper, A., Chou, F.-M., Chen, Y.-A., Hou, C.-S., Hung, W.-C., & Lin, M.-S. (2010). Monitoring of Surface Deformation in Northern Taiwan Using DInSAR and PSInSAR Techniques. Terrestrial, Atmospheric and Oceanic Sciences, 21(3), 447-461.
    Chen, C. W., & Zebker, H. A. (2001). Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. Journal of the Optical Society of America. A, 18(2), 338-351.
    Ching, K. E., Rau, R. J., & Zeng, Y. (2007). Coseismic source model of the 2003 Mw 6.8 Chengkung earthquake, Taiwan, determined from GPS measurements. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B6). doi: 10.1029/2006JB004439
    Cole, J., McCabe, R., Moriarty, T., Malicse, J. A., Delfin, F., Tebar, H., & Ferrer, H. P. (1989). A preliminary Neogene paleomagnetic data set from Leyte and its relation to motion on the Philippine fault. Tectonophysics, 168(1), 205-220.
    Dimalanta, C., Suerte, L., Yumul, G., Tamayo, R., & Ramos, E. (2006). A Cretaceous supra-subduction oceanic basin source for Central Philippine ophiolitic basement complexes: Geological and geophysical constraints. Geosciences Journal, 10(3), 305-320.
    Duquesnoy, T., Barrier, E., Kasser, M., Aurelio, M., Gaulon, R., Punongbayan, R., & Rangin, C. (1994). Detection of creep along the Philippine fault: First results of geodetic measurements on Leyte island, central Philippine. Geophysical research letters, 21(11), 975-978.
    Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., & Roth, L. (2007). The shuttle radar topography mission. Reviews of geophysics, 45(2). doi: 10.1029/2005RG000183
    Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. Geoscience and Remote Sensing, IEEE Transactions on, 38(5), 2202-2212.
    Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. Geoscience and Remote Sensing, IEEE Transactions on, 39(1), 8-20.
    Fitch, T. J. (1972). Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific. Journal of Geophysical Research, 77(23), 4432-4460.
    Fruneau, B., Achache, J., & Delacourt, C. (1996). Observation and modelling of the Saint-Etienne-de-Tinée landslide using SAR interferometry. Tectonophysics, 265(3), 181-190.
    Galgana, G., Hamburger, M., McCaffrey, R., Corpuz, E., & Chen, Q. (2007). Analysis of crustal deformation in Luzon, Philippines using geodetic observations and earthquake focal mechanisms. Tectonophysics, 432(1), 63-87.
    Hanssen, R. F. (2001). Radar interferometry: data interpretation and error analysis (Vol. 2): Springer Science & Business Media.
    Hooper, A. (2006). Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation. Thesis (Ph.D), Stanford university.
    Hooper, A. (2008). A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical research letters, 35(16). doi: 10.1029/2008GL034654
    Hooper, A. (2010). A statistical-cost approach to unwrapping the phase of InSAR time series. Paper presented at the Proceedings FRINGE Workshop, Frascati.
    Hooper, A., Bekaert, D., & Spaans, K. (2013). StaMPS/MTI Manual.
    Hooper, A., Bekaert, D., Spaans, K., & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514, 1-13.
    Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B7). doi: 10.1029/2006JB004763
    Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical research letters, 31(23). doi: 10.1029/2004GL021737
    Jónsson, S., Zebker, H., Segall, P., & Amelung, F. (2002). Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bulletin of the Seismological Society of America, 92(4), 1377-1389.
    Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., Jeng, F. S., & Rau, R. J. (2003). Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998–2001. Journal of Geophysical Research: Solid Earth (1978–2012), 108(B11). doi: 10.1029/2003JB002394
    Lienkaemper, J. J., Galehouse, J. S., & Simpson, R. W. (2001). Long‐term monitoring of creep rate along the Hayward fault and evidence for a lasting creep response to 1989 Loma Prieta earthquake. Geophysical research letters, 28(11), 2265-2268.
    Lienkaemper, J. J., McFarland, F. S., Simpson, R. W., Bilham, R. G., Ponce, D. A., Boatwright, J. J., & Caskey, S. J. (2012). Long-Term Creep Rates on the Hayward Fault: Evidence for Controls on the Size and Frequency of Large Earthquakes. Bulletin of the Seismological Society of America, 102(1), 31-41. doi: 10.1785/0120110033
    Lillesand, T., Kiefer, R., & Chipman, J. (2008). Remote sensing and image interpretation.
    Liu, P. (2012). InSAR observations and modeling of Earth surface displacements in the Yellow River Delta (China). Thesis (Ph.D), University of Glasgow.
    Madsen, S. N., Zebker, H., & Martin, J. (1993). Topographic mapping using radar interferometry: Processing techniques. Geoscience and Remote Sensing, IEEE Transactions on, 31(1), 246-256.
    Massonnet, D., Briole, P., & Arnaud, A. (1995). Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature, 375(6532), 567-570.
    Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth's surface. Reviews of Geophysics, 36(4), 441-500.
    Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., & Rabaute, T. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364(6433), 138-142.
    Noda, H., & Lapusta, N. (2013). Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature, 493(7433), 518-521.
    Pathier, E., Fruneau, B., Deffontaines, B. t., Angelier, J., Chang, C.-P., Yu, S.-B., & Lee, C.-T. (2003). Coseismic displacements of the footwall of the Chelungpu fault caused by the 1999, Taiwan, Chi-Chi earthquake from InSAR and GPS data. Earth and Planetary Science Letters, 212(1), 73-88.
    Perez, J. S., Cahulogan, M. T., Abigania, M. I. T., Daag, A. S., Montes, A. G., Canete, N. M., Tsutsumi, H., & Solidum, R. S. (2008). The Philippine fault zone-Leyte segment: site of catastrophic landslide and creeping movements. Abstracts of 7th General Assembly of the Asian Seismological Commission and Seismological Society of Japan Fall Meeting.
    Roeloffs, E. A. (2001). Creep rate changes at Parkfield, California 1966–1999: Seasonal, precipitation induced, and tectonic. Journal of Geophysical Research: Solid Earth (1978–2012), 106(B8), 16525-16547.
    Sajona, F. G., Bellon, H., Maury, R. C., Pubellier, M., Quebral, R. D., Cotten, J., Bayon, F. E., Pagado, E., & Pamatian, P. (1997). Tertiary and quaternary magmatism in Mindanao andLeyte (Philippines): geochronology, geochemistry and tectonic setting. Journal of Asian Earth Sciences, 15(2), 121-153.
    Schulz, S. S., Mavko, G. M., Burford, R. O., & Stuart, W. D. (1982). Long‐term fault creep observations in central California. Journal of Geophysical Research: Solid Earth (1978–2012), 87(B8), 6977-6982.
    Sousa, J. (2009). Potential of Integrating PSI Methodologies in the Detection of Surface Deformation. Thesis (Ph.D), University of Porto.
    Thurber, C., & Sessions, R. (1998). Assessment of creep events as potential earthquake precursors: application to the creeping section of the San Andreas fault, California. Pure and Applied Geophysics, 152(4), 685-705.
    Tsutsumi, H., & Perez, J. S. (2011). Along strike variation of seismic behavior of the Philippine fault based on historical-and paleo-seismicity. AGU Fall Meeting Abstracts.
    Tsutsumi, H., & Perez, J. S. (2013). Large-scale active fault map of the Philippine fault based on aerial photograph interpretation. 活断層研究= Active fault research(39), 29-37.
    Willis, B. (1944). Philippine earthquakes and structure. Bulletin of the Seismological Society of America, 34(2), 69-81.
    Yu, S. B., Kuo, L. C., Punongbayan, R. S., & Ramos, E. G. (1999). GPS observation of crustal deformation in the Taiwan‐Luzon Region. Geophysical research letters, 26(7), 923-926.
    Zebker, H. A., Rosen, P. A., Goldstein, R. M., Gabriel, A., & Werner, C. L. (1994b). On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. Journal of Geophysical Research: Solid Earth (1978–2012), 99(B10), 19617-19634.
    Zebker, H. A., Werner, C. L., Rosen, P., & Hensley, S. (1994a). Accuracy of topographic maps derived from ERS-1 interferometric radar. Geoscience and Remote Sensing, IEEE Transactions on, 32(4), 823-836.
    汪俊宏 (2007),基於四元樹分解之新型雜訊估測演算法,國立成功大學電腦與通信工程研究所碩士論文,共80頁。
    洪偉嘉 (2009),應用多重感應器監測雲林地區三維變形,國立交通大學土木工程系所博士論文,共152頁。
    謝嘉聲 (2006),以雷達干涉技術偵測地表變形之研究,國立交通大學土木工程系所博士論文,共159頁。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE